n型单晶硅电池性能的模拟研究任务书

 2021-10-25 21:40:13

1. 毕业设计(论文)的内容和要求

目前,单晶硅太阳能电池具有转换效率高、性能稳定等特点而得到广泛应用。

单晶硅商业组件的效率在最近五年不停攀升,效率已经超过20%,使光伏发电成本不断下降。

但未来进一步提升单晶硅电池效率会越来越困难,因此如何精确优化电池工艺显得格外重要。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

建议开题报告和毕业论文的涉及英文文献不少于25篇,以下是与本课题相关的部分文献, 请学生根据需要自行补充。

[1] Tao Y, Upadhyaya V, Chen C, et al. Large area tunnel oxide passivated rear contact n-type Si solar cells with 21.2% efficiency[J]. Progress in Photovoltaics: Research and Applications, 2016,24(6):830-835.[2] Yamaguchi S, Masuda A, Ohdaira K. Changes in the current densityvoltage and external quantum efficiency characteristics of n-type single-crystalline silicon photovoltaic modules with a rear-side emitter undergoing potential-induced degradation[J]. Solar Energy Materials and Solar Cells, 2016,151:113-119.[3] Kumar P, Pfeffer M, Willsch B, et al. N-type single-crystalline Si solar cells: Front side metallization for solar cells reaching 20% efficiency[J]. Solar Energy Materials and Solar Cells, 2016,157:200-208.[4] Yamaguchi S, Masuda A, Ohdaira K. Progression of rapid potential-induced degradation of n-type single-crystalline silicon photovoltaic modules[J]. Applied Physics Express, 2016,9(11):112301.[5] Tao Y, Madani K, Cho E, et al. High-efficiency selective boron emitter formed by wet chemical etch-back for n-type screen-printed Si solar cells[J]. Applied Physics Letters, 2017,110(2):21101.[6] Tao K, Li Q, Hou C, et al. Application of a-Si/μc-Si hybrid layer in tunnel oxide passivated contact n-type silicon solar cells[J]. Solar Energy, 2017,144:735-739.[7] Cheng X, Repo P, Halvard H, et al. Surface Passivation Properties of HfO2 Thin Film on n-Type Crystalline Si[J]. IEEE Journal of Photovoltaics, 2017,7(2):479-485.[8] Hara K, Ogawa K, Okabayashi Y, et al. Influence of surface structure of n-type single-crystalline Si solar cells on potential-induced degradation[J]. Solar Energy Materials and Solar Cells, 2017,166:132-139.[9] Richter A, Benick J, Feldmann F, et al. n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar Energy Materials and Solar Cells, 2017,173:96-105.[10] Li S, Lin G, Li Y, et al. Fabrication and temperature-dependent performance of aluminum-alloyed back-junction n-type silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2018,26(4):303-309.[11] Shanmugam V, Khanna A, Perez D J, et al. 21% efficient screen-printed n-type silicon wafer solar cells with implanted phosphorus front surface field[J]. Solar Energy Materials and Solar Cells, 2018,186:124-130.[12] Veith-Wolf B A, Schfer S, Brendel R, et al. Reassessment of intrinsic lifetime limit in n-type crystalline silicon and implication on maximum solar cell efficiency[J]. Solar Energy Materials and Solar Cells, 2018,186:194-199.[13] Schmidt J, Peibst R, Brendel R. Surface passivation of crystalline silicon solar cells: Present and future[J]. Solar Energy Materials and Solar Cells, 2018,187:39-54.[14] Shanmugam V, Chen N, Yan X, et al. Impact of the manufacturing process on the reverse-bias characteristics of high-efficiency n-type bifacial silicon wafer solar cells[J]. Solar Energy Materials and Solar Cells, 2019,191:117-122.[15] Nandakumar N, Rodriguez J, Kluge T, et al. Approaching 23% with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD[J]. Progress in Photovoltaics: Research and Applications, 2018.[16] Pal B, Ray S, Gangopadhyay U, et al. Novel technique for fabrication of n-type crystalline silicon selective emitter for solar cell processing[J]. Materials Research Express, 2019,6(7):75523.[17] Morisset A, Cabal R, Grange B, et al. Highly passivating and blister-free hole selective poly-silicon based contact for large area crystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019,200:109912.[18] Peng Z, Buck T, Koduvelikulathu L J, et al. Industrial Screen-Printedn-PERT-RJ Solar Cells: Efficiencies Beyond 22% and Open-Circuit Voltages Approaching 700 mV[J]. IEEE Journal of Photovoltaics, 2019,9(5):1166-1174.[19] Melskens J, van de Loo B W H, Macco B, et al. Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects[J]. IEEE Journal of Photovoltaics, 2018,8(2):373-388.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。