1. 毕业设计(论文)的内容和要求
膜分离技术作为一种持续、稳定的过程,逐渐受到研究者的关注。
陶瓷-硝酸盐双相膜理论上对氮氧化物具有极高的选择性,过程中无需外部能量提供就能实现氮氧化物的分离,在高温下捕集混合气中的氮氧化物大大节省了操作过程的能源消耗。
本课题基于前期开发的片式陶瓷-硝酸盐双相膜,系统研究四通道熔融二元硝酸盐陶瓷双相膜的制备及其性能的影响,进行一系列表征和测试,以期获得高性能和高选择性的四通道熔融二元硝酸盐陶瓷双相膜。
2. 参考文献
[1] S Wang, J Hao. Air quality management in China: issues, challenges, and options [J]. Journal of Environmental Sciences, 2012, 24(1): 2-13.[2] B Zhao, S Wang, H Liu, et al. NOx emissions in China: historical trends and future perspectives [J]. Atmospheric Chemistry and Physics, 2013,13( 19) : 9869-9897.[3] R Goela, S K Guttikunda. Role of urban growth, technology,and judicial interventions on vehicle exhaust emissions in Delhi for 1991-2014 and 2014-2030 periods [J]. Environmental Development, 2015, 14: 6-21.[4] LLi, Y Ge, M Wang , et al. Effect of gasoline /methanol blends on motorcycle emissions: exhaust and evaporative emissions [J]. Atmospheric Environment, 2015, 102: 79-85.[5] JGao, X Peng, G Chen, et al. Insights into the chemical characterization and sources of PM 2.5 in Beijing at a 1-h time resolution [J]. Science of the Total Environment, 2016, 42(Pt A) : 162-171.[6] G Wang, S Cheng, W Wei, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China [J]. Atmospheric Pollution Research, 2016, 7( 4) : 711-724.[7] N.Y. Topsoe, et al. Mechanism of the selective catalytic reduction of nitric-oxide by ammonia elucidated by in-situ online fourier-transform infrared-spectroscopy [J]. Science, 1994, 265 (5176): 1217-1219.[8] Z. Liu, J. Li, S.I. Woo, Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen [J]. Energy Environmental Science, 2012, 5 (10): 8799-8814.[9] S. Yang, Y. Fu, et al. Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity [J]. Catalysis Science Technology, 2014, 4 (1): 224-232.[10] M.J. Prather, et al. Time scales in atmospheric chemistry: Coupled perturbations to N2O, NOy, and O3 [J]. Science, 1998, 279 (5355): 1339-1341.[11] K. Skalska, J.S. Miller, S. Ledakowicz, et al. Trends in NOx abatement: A review, Science of The Total Environment [J]. 2010, 408 (19): 3976-3989.[12] R.M. Heck, et al. Catalytic abatement of nitrogen oxides-stationary applications, Catalysis Today [J]. 1999, 53 (4): 519-523.[13] P. Forzatti, I. Nova, E. Tronconi, et al. Enhanced NH3 selective catalytic reduction for NOx Abatement [J]. Angewandte Chemie, 2009, 121 (44): 8516-8518.[14] Y. Nagao, Y. Nakahara, T. Sato, H. Iwakura, , et al. Rh/ZrP2O7 as an efficient automotive catalyst for NOx reduction under slightly lean conditions [J]. ACS Catal., 2015, 5 (3): 1986-1994.[15] G. Zhang, E.I. Papaioannou, I.S. Metcalfe. Selective, high-temperature permeation of nitrogen oxides using a supported molten salt membrane [J]. Energy Environmental Science, 2015, 8 (4): 1220-1223.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。