多种载荷模式下的蠕变疲劳寿命预测模型任务书

 2021-10-28 20:46:33

1. 毕业设计(论文)的内容和要求

论文内容主要有:一、任务书的认真阅读二、参考文献的查阅,完成文献综述;三、英文文献的翻译;四、CAD图绘制;五、试验研究;六、完成论文。

论文主要要求有:一、 毕业论文严格按照时间进度进行;二、 每周与导师交流3次,有问题及时解决;三、英文文献的翻译独立完成,不得使用翻译软件;四、CAD图绘制独立完成,不得拷贝其他人的CAD文件。

2. 参考文献

[1] Tahir F, Liu Y. A new experimental testing method for investigation of creep-dominant creep-fatigue interaction in Alloy 617 at 950 C [J]. International Journal of Pressure Vessels and Piping, 2017, 154: 75-82. [2] Guo B, Zhang W, Li S, et al. High temperature low cycle fatigue and creep-fatigue behavior of a casting Al-9Si-CuMg alloy used for cylinder heads [J]. Materials Science and Engineering: A, 2017, 700: 397-405. [3] Tahir F, Liu Y. Development of creep-dominant creep-fatigue testing for Alloy 617[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2016: 0668. [4] Prasad K, Sarkar R, Ghosal P, et al. Simultaneous creepfatigue damage accumulation of forged turbine disc of IN 718 superalloy [J]. Materials Science and Engineering: A, 2013, 572: 1-7. [5] Simpson J A, Wright J K, Wright R N. Novel experiments to characterise creep-fatigue degradation in VHTR alloys[R]. 2015.[6] Fournier B, Dalle F, Sauzay M, et al. Comparison of various 912% Cr steels under fatigue and creep-fatigue loadings at high temperature[J]. Materials Science and Engineering: A, 2011, 528(22-23): 6934-6945. [7] Wang X, Zhang W, Zhang T, et al. A New Empirical Life Prediction Model for 912% Cr Steels under Low Cycle Fatigue and Creep Fatigue Interaction Loadings [J]. Metals, 2019, 9(2): 183. [8] Alsmadi Z Y, Alomari A, Kumar N, et al. Effect of hold time on high temperature creep-fatigue behavior of Fe25Ni20Cr (wt.%) austenitic stainless steel (Alloy 709)[J]. Materials Science and Engineering: A, 2020, 771: 138591. [9] 范志超, 陈学东, 陈凌, 等. 基于延性耗竭理论的疲劳蠕变寿命预测方法[J]. 金属学报, 2006, 42(4): 415-420. [10] Zhu S P, Huang H Z, Li Y, et al. A novel viscosity-based model for low cycle fatiguecreep life prediction of high-temperature structures[J]. International Journal of Damage Mechanics, 2012, 21(7): 1076-1099. [11] Zhu S P, Huang H Z, Li H, et al. A new ductility exhaustion model for high temperature low cycle fatigue life prediction of turbine disk alloys[J]. International Journal of Turbo and Jet Engines, 2011, 28(2): 119-131. [12] Chen G, Zhang Y, Xu D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 C[J]. Materials Science and Engineering: A, 2016, 655: 175-182. [13] Wang X, Zhang W, Gong J, et al. Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5 Mo-1.8 WV-Nb heat-resistant steel at high temperature[J]. Journal of Nuclear Materials, 2018, 505: 73-84. [14] Zhu S P, Yang Y J, Huang H Z, et al. A unified criterion for fatiguecreep life prediction of high temperature components[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(4): 677-688. [15] Santecchia E, Hamouda A M S, Musharavati F, et al. A review on fatigue life prediction methods for metals[J]. Advances in Materials Science and Engineering, 2016, 2016.请同学参考以上文献,继续独立查阅文献并补充。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。