离子型聚酰胺担载的贵金属催化剂在生物质转化中的应用任务书

 2021-11-05 19:20:13

1. 毕业设计(论文)的内容和要求

1. 查阅、整理文献资料,加深对自己课题的理解,并撰写开题报告。

2. 要求学生对分离工程、无机与分析化学、仪器分析等学科复习,从而对以后催化性能测试实验、谱图分析打下基础。

3. 主要研究通过离子型羧基单体与氨基单体进行合成,并用XRD、FT-IR、SEM电镜等表征手段进行表征。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts[J]. Chemical reviews, 2013, 114(3): 1827-1870.[2] Albani D, Li Q, Vil G, et al. Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to gamma-valerolactone[J]. Green Chemistry, 2017, 19(10): 2361-2370.[3] Jones D R, Iqbal S, Miedziak P J, et al. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilisation[J]. Topics in Catalysis, 2018, 61: 833-843.[4] Qiao Y, Said N, Rauser M, et al. Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: how do solvent effects during material synthesis affect catalytic properties[J]. Green Chemistry, 2017, 19(4): 977-986.[5] Wei Z, Lou J, Su C, et al. An efficient and reusable embedded Ru catalyst for the hydrogenolysis of levulinic acid to γ-valerolactone[J]. ChemSusChem, 2017, 10(8): 1720-1732.[6] Li F, France L J, Cai Z, et al. Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brnsted acid sites[J]. Applied Catalysis B: Environmental, 2017, 214: 67-77.[7] Ouyang W, Zhao D, Wang Y, et al. Continuous flow conversion of biomass-derived methyl levulinate into γ-valerolactone using functional metal organic frameworks[J]. ACS Sustainable Chemistry Engineering, 2018, 6(5): 6746-6752.[8] Ruppert A M, Grams J, Jedrzejczyk M, et al. Titania-supported catalysts for levulinic acid hydrogenation: influence of support and its impact on γ-valerolactone yield[J]. ChemSusChem, 2015, 8(9): 1538-1547.[9] Zhang L, Mao J, Li S, et al. Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching[J]. Applied Catalysis B: Environmental, 2018, 232: 1-10.[10] Tan J, Cui J, Deng T, et al. Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported ruthenium catalyst[J]. ChemCatChem, 2015, 7(3): 508-512.[11] Tan J, Cui J, Cui X, et al. Graphene-modified Ru nanocatalyst for low-temperature hydrogenation of carbonyl groups[J]. ACS Catalysis, 2015, 5(12): 7379-7384.[12] Tan J, Cui J, Ding G, et al. Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over a highly active and stable ruthenium catalyst[J]. Catalysis Science Technology, 2016, 6(5): 1469-1475.[13] Abdelrahman O A, Heyden A, Bond J Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C[J]. ACS catalysis, 2014, 4(4): 1171-1181.[14] Yang Y, Sun C J, Brown D E, et al. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts[J]. Green Chemistry, 2016, 18(12): 3558-3566.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。