表面接枝纤维素纳米晶的载药释放性能研究任务书

 2022-03-16 21:42:00

1. 毕业设计(论文)的内容、要求、设计方案、规划等

[1] 了解课题的背景、目的、意义和研究内容;前言部分进行文献综述, 在原有调研文献的基础上进行进一步补充, 要求最新、全面、具体,对原有文献进行归纳整理,找出创新和不足之处, 提出自己的创新点; 要求在中国期刊网和Sciencedirect数据库上调研文献, 找出纤维素载药释放的相关文献资料, 包括最新的应用和研究方向.[2] 参考文献的实验方案结合自身课题的创新点提出合理优化的实验方案, 保证结果分析和结论的可靠性, 不是无的放矢; 实验方案的确立重点要实现以下几个方面: a. 纤维素纳米晶接枝侧链长度的调整及其在水溶液中形态的控制; b. 温敏性能表征;c. 载药释放性能测试; 因此, 要实验方案的可操作性 (含理论基础)进行论证; 合理正交实验, 研究纤维素纳米晶的结构、形态对其载药释放性能的影响.[3] 采集实验数据应兼顾可行性和科学性: 要保证在现有实验基础的条件上能仅可能多的采集实验数据, 对部分受条件限制无法采集的直接数据可通过间接数据来说明问题, 采集实验数据应科学规范, 保证数据的有效性; 应采用科学的方法和工具对数据进行处理, 尽可能多地获得有效信息. [4] 结果分析和结论的获得应建立在实验数据的基础上, 主要讨论纤维素纳米晶的表征和载药释放性质, 以及相应的构效关系.[5] 图表清晰规范, 格式统一, 一张图表至少保证五组数据才能得到有效的结论, 对所的结果和结论分析应有理论根据和参考文献, 不能缺乏逻辑性或自相矛盾.

2. 参考文献(不低于12篇)

1.周冠成, 谷军, 吴伟兵, 徐朝阳, 龚木荣, 戴红旗. 高压静电喷雾法制备再生纤维素磁性微球[J]. 中国造纸学报, 2014,29(3): 27-31.2.吴伟兵,徐朝阳,庄志良,祝黎. 单电子转移活性自由基聚合制备温敏型荧光纤维素纳米晶. 高分子学报,20143.庄志良,吴伟兵,谷军,景宜,戴红旗. 微晶纤维素ARGET ATRP接枝共聚制备PMMA和PMAA-Na的研究. 南京林业大学学报(自然科学版),2014,38(1): 125-129.4.WU Wei-bing,ZHUANG Zhi-liang,JING Yi,DAI Hong-Qi. Research Progress of Cellulose Self-Assembly Nanoparticles. Chemistry and Industry Forest Products. 2014, 34(2): 126-133.吴伟兵,庄志良,景宜,戴红旗. 纤维素自组装纳米粒子的研究进展. 林产化学与工业, 2014, 34(2): 126-1335. Weibing Wu, Jun Gu, Guancheng Zhou, Lei Zhang, Murong Gong, Hongqi Dai. Fabrication of Natural Cellulose Microspheres via Electrospraying from NaOH/Urea Aqueous System. Journal of Applied Polymer Science. 2014, DOI: 10.1002/APP.406566.谷军,周冠成,吴伟兵*,龚木荣,戴红旗. 高压静电喷雾法制备天然纤维素微球及影响因素研究. 高分子学报,2014, (4): 491-498. 7.吴伟兵,张磊. 纳晶纤维素的功能化及应用. 化学进展,2014, 26(2/3), 403-414.Wu Wei-Bing, Zhang Lei. Functionalizations and Applications of Nanocrystalline Cellulose. Progress in Chemistry. 2014, 26(2/3), 403-414.8.谷军,吴伟兵,龚木荣,景宜,戴红旗. 超声波处理对纤维素碱脲体系溶解性能的影响.纤维素科学与技术,2014, 4.9.Jain, K. K., The role of nanobiotechnology in drug discovery. Drug discovery today 2005, 10 (21), 1435-1442.10.Baruah, S.; Dutta, J., Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters 2009, 7 (3), 191-204.11.Wang, X.; Liu, L.-H.; Ramstrm, O.; Yan, M., Engineering nanomaterial surfaces for biomedical applications. Experimental Biology and Medicine 2009, 234 (10), 1128-1139.12.Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews 2010, 110 (6), 3479-3500.13.Klemm, D.; Kramer, F.; Moritz, S.; Lindstrm, T.; Ankerfors, M.; Gray, D.; Dorris, A., Nanocelluloses: A New Family of Nature‐Based Materials. Angewandte Chemie International Edition 2011, 50 (24), 5438-5466.14.Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011, 40 (7), 3941-3994.15.Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005, 6 (2), 612-626.16.Braun, B.; Dorgan, J. R., Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 2008, 10 (2), 334-341.17.Habibi, Y.; Chanzy, H.; Vignon, M. R., TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006, 13 (6), 679-687.18.Hasani, M.; Cranston, E. D.; Westman, G.; Gray, D. G., Cationic surface functionalization of cellulose nanocrystals. Soft Matter 2008, 4 (11), 2238-2244.19.Gouss, C.; Chanzy, H.; Excoffier, G.; Soubeyrand, L.; Fleury, E., Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 2002, 43 (9), 2645-2651.20.Siqueira, G.; Bras, J.; Dufresne, A., Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 2008, 10 (2), 425-432.21. Junior de Menezes, A.; Siqueira, G.; Curvelo, A. A.; Dufresne, A., Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 2009, 50 (19), 4552-4563.22. Pandey, J.; Chu, W.; Kim, C.; Lee, C.; Ahn, S., Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Composites Part B: Engineering 2009, 40 (7), 676-680.23. Kloser, E.; Gray, D. G., Surface grafting of cellulose nanocrystals with poly (ethylene oxide) in aqueous media. Langmuir 2010, 26 (16), 13450-13456.24. JunkerNielsen, L., Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chemical Communications 2010, 46 (47), 8929-8931.25. Mahmoud, K. A.; Mena, J. A.; Male, K. B.; Hrapovic, S.; Kamen, A.; Luong, J. H., Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Applied Materials Palermo, A.; Moran-Mirabal, J. M.; Cranston, E. D., Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents. Biomacromolecules 2013, 14 (9), 3278-3284.27. Huang, J.-L.; Li, C.-J.; Gray, D. G., Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups. ACS Sustainable Chemistry Roman, M., Fluorescently labeled cellulose nanocrystals for bioimaging applications. Journal of the American Chemical Society 2007, 129 (45), 13810-13811.29. Liu, Y. N.; Yu, H. Y.; Qin, Z. Y.; Chen, L., Enhanced Heat Conduction in Cellulose Nanocrystals Grafting Polyethylene Glycol as Solid-Solid Phase Change Materials. Advanced Materials Research 2012, 557, 563-566.30. Azzam, F.; Heux, L.; Putaux, J.-L.; Jean, B., Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 2010, 11 (12), 3652-3659.31. Mangalam, A. P.; Simonsen, J.; Benight, A. S., Cellulose/DNA hybrid nanomaterials. Biomacromolecules 2009, 10 (3), 497-504.32. Zoppe, J. O.; Habibi, Y.; Rojas, O. J.; Venditti, R. A.; Johansson, L.-S.; Efimenko, K.; Osterberg, M.; Laine, J., Poly(N-isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules 2010, 11 (10), 2683-2691.33. Zoppe, J. O.; Osterberg, M.; Venditti, R. A.; Laine, J.; Rojas, O. J., Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Biomacromolecules 2011, 12 (7), 2788-2796.34. Zoppe, J. O.; Venditti, R. A.; Rojas, O. J., Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of colloid and interface science 2012, 369 (1), 202-209.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。