PEO基聚合物电解质的组成调控及氯离子传导特性任务书

 2021-10-22 21:44:49

1. 毕业设计(论文)的内容和要求

本课题在理解氯离子电池研究背景、掌握其电解质研究概况以及分析相关研究存在的问题的基础上。

通过浇注法或原位固化法制备PEO基固态聚合物电解质,研究电解质的组成、结构与电化学性能的相互关系和影响规律。

分析、总结数据,并撰写毕业论文。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求指点3.1,毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的英文文献不少于20篇,其中近5年不少于8篇,英文文献不少于5篇。

以下是与本课题相关的部分文献列表: [1] Zhao, X.Y., et al., Metal Oxychlorides as Cathode Materials for Chloride Ion Batteries [J]. Angewandte Chemie-International Edition 2013,52(51): 13621-13624.[2] Gao, P., et al., Vanadium Oxychloride/Magnesium Electrode Systems for Chloride Ion Batteries [J]. ACS Applied Materials Interfaces 2014, 6(24): 22430-22435.[3] Zhao, X.Y., et al., Magnesium Anode for Chloride Ion Batteries [J]. ACS Applied Materials Interfaces 2014, 6(14): 10997-11000.[4] Zhao, X.Y., et al., Chloride ion battery: A new member in the rechargeable battery family [J]. Journal of Power Sources 2014, 245: 706-711.[5] Gao, P., et al., VOCl as a Cathode for Rechargeable Chloride Ion Batteries [J]. Angewandte Chemie-International Edition 2016, 55(13): 4285-4290.[6] Gschwind, F., et al., Facile Preparation of Chloride-Conducting Membranes: First Step towards a Room-Temperature Solid-State Chloride-Ion Battery [J]. Chemistryopen 2016, 5(6): 525-530.[7] Zhao, X.Y., et al., Carbon incorporation effects and reaction mechanism of FeOCl cathode materials for chloride ion batteries [J]. Scientific Reports 2016, 6: 19448.[8] Chen, F., Z.Y. Leong, and H.Y. Yang, An aqueous rechargeable chloride ion battery [J]. Energy Storage Materials 2017, 7: 189-194.[9] Gschwind, F., H. Euchner, and G. Rodriguez-Garcia, Chloride Ion Battery Review: Theoretical Calculations, State of the Art, Safety, Toxicity, and an Outlook towards Future Developments [J]. European Journal of Inorganic Chemistry 2017, 2017(21): 2784-2799.[10] Wang, D., et al., Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations [J]. Journal of Materials Chemistry A 2017, 5(47): 24720-24727.[11] Yu, T., et al., Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries [J]. ACS Energy Letters 2017, 2(10): 2341-2348.[12] Zhao, X., et al., Developing Polymer Cathode Material for the Chloride Ion Battery [J]. ACS Applied Materials Interfaces, 2017, 9(3): 2535-2540.[13] Zhao, Z., et al., Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery [J]. Electrochimica Acta 2018, 270: 30-36.[14] Hu, X., et al., Electrochemical Performance of Sb4O5Cl2 as a New Anode Material in Aqueous Chloride-Ion Battery [J]. ACS Applied Materials Interfaces 2019, 11(9): 9144-9148.[15] Chen, C., et al., An All-Solid-State Rechargeable Chloride Ion Battery [J]. Advanced Science 2019, 6(6): 1802130.[16] Kong, H., et al., Polypyrrole as a Novel Chloride‐Storage Electrode for Seawater Desalination [J]. Energy Technology 2019, 7(11): 1900835.[17] Yan, Q., et al., Vanadium oxychloride as cathode for rechargeable aluminum batteries [J]. Journal of Alloys and Compounds 2019, 806: 1109-1115.[18] Yang, R., T. Yu, and X. Zhao, Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries [J]. Journal of Alloys and Compounds 2019, 788: 407-412.[19] Yu, T., et al., Polyaniline-Intercalated FeOCl Cathode Material for Chloride-Ion Batteries [J]. ChemElectroChem 2019, 6(6): 1761-1767.[20] Shi, X., et al., FeOCl/Ln (Ln = La or Y): efficient photo-Fenton catalysts for ibuprofen degradation [J]. New Journal of Chemistry 2019, 43: 16273-16280.[21] Liang, L., et al., Efficient degradation of phenol using Sn4 doped FeOCl as photo-Fenton catalyst [J]. Materials Letters 2019, 240: 30-34.[22] Yin, Q., et al., CoFe-Cl Layered Double Hydroxide: A New Cathode Material for High-Performance Chloride Ion Batteries [J]. Advanced Functional Materials 2019, 29: 1900983.[23] Lin, Q., et al., A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus [J]. Advanced Materials 2018, 30: 1802661.[24] Wan J., et al., Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries [J]. Materials Today Nano 2018, 4: 1-16.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。