1. 毕业设计(论文)的内容和要求
石墨烯量子点是尺寸小于10 nm的石墨烯薄片,而且其原子层数少于5层。
石墨烯量子点不仅具有石墨烯的优异性能,如较大的表面积、较高的电子迁移率以及较高的机械强度,而且在实验上被证实拥有较好生物相容性。
同时,零维的石墨稀量子点比一维的碳纳米管及二维的石墨烯片表现出更强的量子限制效应和边界效应。
2. 参考文献
[1] Samir M, Anderson D G, Xiaoyuan C, et al. Accelerating the Translation of Nanomaterials in Biomedicine[J]. Acs Nano, 2015, 9(7): 6644-6654.[2] Valsamijones E, Lynch I. How safe are nanomaterials?[J]. Science, 2015, 350(6259): 388-389.[3] Liu Q, Guo B D, Rao Z Y, et al. Strong Two-Photon-Induced Fluorescence from Photostable, Biocompatible Nitrogen-Doped Graphene Quantum Dots for Cellular and Deep-Tissue Imaging[J]. Nano Letters, 2013, 13(6): 2436-2441.[4] Liu S, Tian J Q, Wang L, et al. Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions[J]. Advanced Materials, 2012, 24(15): 2037-2041.[5] Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream[J]. Science, 2004, 303(5665): 1818-1822.[6] Langer R. Drug delivery and targeting[J]. Nature, 1998, 392(6679 Suppl): 5.[7] Lodahl P, Van Driel A F, Nikolaev I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 2004, 430(7000): 654-657.[8] Chestnoy N, Harris T D, Hull R, et al. Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state[J]. Chemischer Informationsdienst, 1986, 17(42): no-no.[9] Bruchez M, ., Moronne M, ., Gin P, ., et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.[10] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271(5251): 933-937.[11] Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. 纳米研究(英文版), 2015, 8(2): 355-381.[12] Lin L, Zhang S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chemical Communications, 2012, 48(82): 10177-10179.[13] Xu Q F, Zhou Q, Hua Z, et al. Single-Particle Spectroscopic Measurements of Fluorescent Graphene Quantum Dots[J]. Acs Nano, 2013, 7(12): 10654-10661.[14] Wang L, Zhu S J, Wang H Y, et al. Unraveling Bright Molecule‐Like State and Dark Intrinsic State in Green‐Fluorescence Graphene Quantum Dots via Ultrafast Spectroscopy[J]. Advanced Optical Materials, 2013, 1(3): 264-271.[15] Zhu S, Zhang J, Tang S, et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up‐Conversion Bioimaging Applications[J]. Advanced Functional Materials, 2012, 22(22): 4732-4740.[16] Chi-Fan C, Cheol-Hwan P, Boudouris B W, et al. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 2011, 471(7340): 617-20.[17] Eda G, Lin Y Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide[J]. Advanced Materials, 2010, 22(4): 505-509.[18] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012, 12(2): 844.[19] Kim S, Hwang S W, Kim M K, et al. Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape[J]. Acs Nano, 2012, 6(9): 8203-8.[20] Fuyuno N, Kozawa D, Miyauchi Y, et al. Drastic Change in Photoluminescence Properties of Graphene Quantum Dots by Chromatographic Separation[J]. Advanced Optical Materials, 2014, 2(10): 983989.[21] Sk M A, Ananthanarayanan A, Huang L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960.[22] Cui R, Liu C, Shen J, et al. Gold NanoparticleColloidal Carbon Nanosphere Hybrid Material: Preparation, Characterization, and Application for an Amplified Electrochemical Immunoassay[J]. Advanced Functional Materials, 2010, 18(15): 2197-2204.[23] Dong X Y, Mi X N, Zhao W W, et al. CdS Nanoparticles functionalized colloidal carbon particles: Preparation, characterization and application for electrochemical detection of thrombin[J]. Biosensors Bioelectronics, 2011, 26(8): 3654-3659.[24] Zhu X, Zhao T, Nie Z, et al. Non-Redox Modulated Fluorescence Strategy for Sensitive and Selective Ascorbic Acid Detection with Highly Photoluminescent Nitrogen-Doped Carbon Nanoparticles via Solid-State Synthesis[J]. Analytical Chemistry, 2015, 87(16): 8524-8530.[25] Zhu X, Zhao T, Nie Z, et al. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells[J]. Nanoscale, 2016, 8(4): 2205-2211.[26] Dengyu P, Jingchun Z, Zhen L, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738.[27] Pan D, Guo L, Zhang J, et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence[J]. Journal of Materials Chemistry, 2012, 22(8): 3314-3318.[28] Kosynkin D V, Higginbotham A L, Alexander S, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2017, 458(7240): 872-876.[29] Zhu X, Xiao X, Zuo X, et al. Hydrothermal Preparation of Photoluminescent Graphene Quantum Dots Characterized Excitation‐Independent Emission and its Application as a Bioimaging Reagent[J]. Particle Particle Systems Characterization, 2014, 31(7): 801-809.[30] Shoujun Z, Junhu Z, Chunyan Q, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chemical Communications, 2011, 47(24): 6858-6860.[31] Liu Q, Guo B, Rao Z, et al. Strong Two-Photon-Induced Fluorescence from Photostable, Biocompatible Nitrogen-Doped Graphene Quantum Dots for Cellular and Deep-Tissue Imaging[J]. Nano Letters, 2013, 13(6): 2436-2441.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。