TiO2对MgH2储氢的选择性催化研究任务书

 2021-10-25 21:38:36

1. 毕业设计(论文)的内容和要求

本课题旨在催化改性镁基材料的储氢性能。

TiO2具有良好的催化效果,并在能源转换领域被广泛研究。

其中,锐钛矿型TiO2的不同晶面表现出显著的催化活性差异性。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

为了更深入的了解该课题的研究进展,需要阅读相关的中英文文献,以下列出相关的部分英文文献:[1] L. Schlapbach, A. Zttel, Hydrogen storage materials for mobile applications, Nature, 414 (2001) 353-358.[2] V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellosta von Colbe, J.C. Crivello, F. Cuevas, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M.V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, M. Zhu, Magnesium based materials for hydrogen based energy storage: past, present and future, Int. J. Hydrogen Energy, 44 (2019) 7809-7859.[3] A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Nanostructured metal hydrides for hydrogen storage, Chem. Rev., 118 (2018) 10775-10839.[4] J.G. Zhang, Y.F. Zhu, L.L. Yao, C. Xu, Y.N. Liu, L.Q. Li, State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage, J. Alloy. Compd., 782 (2019) 796-823.[5] Y.H. Sun, C.Q. Shen, Q.W. Lai, W. Liu, D.W. Wang, K.F. Aguey-Zinsou, Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art, Energy Storage Mater., 10 (2018) 168-198.[6] X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci., 88(2017) 1-48.[7] S. Kumar, T. Pavloudis, V. Singh, H. Nguyen, S. Steinhauer, C. Pursell, B. Clemens, J. Kioseoglou, P. Grammatikopoulos, M. Sowwan, Hydrogen flux through size selected Pd nanoparticles into underlying Mg nanofilms, Adv. Energy Mater., 8 (2018) 1701326.[8] Q.A. Zhang, D.D. Liu, Q.Q. Wang, F. Fang, D.L. Sun, L.Z. Ouyang, M. Zhu, Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase, Scripta Mater., 65 (2011) 233-236.[9] G.L. Xia, Y.B. Tan, F.L. Wu, F. Fang, D.L. Sun, Z.P. Guo, Z.G. Huang, X.B. Yu, Graphene-wrapped reversible reaction for advanced hydrogen storage, Nano Energy, 26 (2016) 488-495.[10] Z.Y. Wang, Z.H. Ren, N. Jian, M.X. Gao, J.J. Hu, F. Du, H.G. Pan, Y.F. Liu, Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2, J. Mater. Chem. A, 6 (2018) 16177-16185.[11] N.S. Norberg, T.S. Arthur, S.J. Fredrick, A.L. Prieto, Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution, J. Am. Chem. Soc., 133 (2011) 10679-10681.[12] C. Zlotea, M.A. Sow, G. Ek, J.P. Couzini, L. Perrire, I. Guillot, J. Bourgon, K.T. Mller, T.R. Jensen, E. Akiba, M. Sahlberg, Hydrogen sorption in TiZrNbHfTa high entropy alloy, J. Alloy. Compd., 775 (2019) 667-674.[13] J.G. Zhang, Y.F. Zhu, H.J. Lin, Y.N. Liu, Y. Zhang, S.Y. Li, Z.L. Ma, L.Q. Li, Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement, Adv. Mater., 29 (2017) 1700760.[14] G.L. Xia, Y.B. Tan, X.W. Chen, D.L. Sun, Z.P. Guo, H.K. Liu, L.Z. Ouyang, M. Zhu, X.B. Yu, Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27 (2015) 5981-5988.[15] Q.A. Zhang, C.J. Jiang, D.D. Liu, Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR (R = La, Nd and Sm) alloys, Int. J. Hydrogen Energy, 37 (2012) 10709-10714.[16] X.Q. Tran, S.D. McDonald, Q.F. Gu, T. Yamamoto, K. Shigematsu, K. Aso, E. Tanaka, S. Matsumura, K. Nogita, In-situ investigation of the hydrogen release mechanism in bulk Mg2NiH4, J. Power Sources, 341 (2017) 130-138.[17] L.F. Wan, Y.S. Liu, E.S. Cho, J.D. Forster, S. Jeong, H.T. Wang, J.J. Urban, J.H. Guo, D. Prendergast, Atomically thin interfacial suboxide key to hydrogen storage performance enhancements of magnesium nanoparticles encapsulated in reduced graphene oxide, Nano Lett., 17 (2017) 5540-5545.[18] W.Y. Xie, D.J. West, Y.Y. Sun, S.B. Zhang, Role of nano in catalysis: Palladium catalyzed hydrogen desorption from nanosized magnesium hydride, Nano Energy, 2 (2013) 742-748.[19] Z.L Ma, J.G. Zhang, Y.F. Zhu, H.J. Lin, Y.N. Liu, Y. Zhang, D.L. Zhu, L.Q. Li, Facile synthesis of carbon supported nano-Ni particles with superior catalytic effect on hydrogen storage kinetics of MgH2, ACS Appl. Energy Mater., 1 (2018) 1158-1165.[20] J.G. Zhang, S.Y. Li, Y.F. Zhu, H.L. Lin, Y.N. Liu, Y. Zhang, Z.L. Ma, L.Q. Li, Controllable fabrication of Ni-based catalysts and their enhancement on desorption properties of MgH2, J. Alloy. Compd., 715 (2017) 329-336.[21] C.Q. Zhou, C. Li, Y.T. Li, Q.A. Zhang, Enhanced hydrogen storage kinetics of an Mg-Pr-Al composite by in situ formed Pr3Al11 nanoparticles, Dalton Trans, 48 (2019) 7735-7742.[22] F. De Angelis, C. Di Valentin, S. Fantacci, A. Vittadini, A. Selloni, Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials, Chem. Rev., 114 (2014) 9708-9753.[23] A. Sinhamahapatra, H.Y. Lee, S.H. Shen, S.S. Mao, J.S. Yu, H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production, Appl. Catal. B: Environ., 237 (2018) 613-621.[24] X. Zhang, Z.H. Leng, M.X. Gao, J.J. Hu, F. Du, J.H. Yao, H.G. Pan, Y.F. Liu, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J. Power Sources, 398 (2018) 183-192.[25] J. Cui, H. Wang, J.W. Liu, L.Z. Ouyang, Q.A. Zhang, D.L. Sun, X.D. Yao, M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts, J. Mater. Chem. A, 1 (2013) 5603-5611.[26] H.J. Lin, J.J. Tang, Q. Yu, H. Wang, L.Z. Ouyang, Y.J. Zhao, J.W. Liu, W.H. Wang, M. Zhu, Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy, 9 (2014), 80-87.[27] Y.F. Liu, K. Zhong, K. Luo, M.X. Gao, H.G. Pan, Q.D. Wang, Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H System, J. Am. Chem. Soc., 131 (2009), 1862-1870.[28] Y.P. Pang, Y.F. Liu, M.X. Gao, L.Z. Ouyang, J.W. Liu, H. Wang, M. Zhu, H.G. Pan, A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures, Nat. Commun., 5 (2014) 3519.[29] L.T. Zhang, Z.L. Cai, Z.D. Yao, L. Ji, Z. Sun, N.H. Yan, B.Y. Zhang, B.B. Xiao, J. Du, X.Q. Zhu, L.X. Chen, A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7 (2019) 5626-5634.[30] X.B. Xie, X.J. Ma, P. Liu, J.X. Shang, X.G. Li, T. Liu, Formation of multiple-phase catalysts for the hydrogen storage of mg nanoparticles by adding flowerlike NiS, ACS Appl. Mater. Inter., 9 (2017) 5937-5946.[31] A.Y. Zhang, W.Y. Wang, J.J. Chen, C. Liu, Q.X. Li, X. Zhang, W.W. Li, Y. Si, H.Q. Yu, Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting, Energy Environ. Sci., 11 (2018) 1444-1448.[32] S. Selcuk, A. Selloni, Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces, Nat. Mater., 15 (2016) 1107-1112.[33] T. Koketsu, J.W. Ma, B.J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortiere, M. Salanne, F. Dardoize, H. Groult, O.J. Borkiewicz, K.W. Chapman, P. Strasser, D. Dambournet, Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2, Nat. Mater., 16 (2017) 1142-1148.[34] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453 (2008) 638-641.[35] W. Wang, C.H. Lu, Y.R. Ni, Z.Z. Xu, Crystal facet growth behavior and thermal stability of {001} faceted anatase TiO2: mechanistic role of gaseous HF and visible-light photocatalytic activity, CrystEngComm, 15 (2013) 2537-2543.[36] C.H. Sun, Y. Jia, X.H. Yang, H.G. Yang, X.D. Yao, G.Q. Lu, A. Selloni, S.C. Smith, Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide, J. Phys. Chem. C, 115 (2011) 25590-25594.[37] Y.R. Yang, K. Ye, D.X. Cao, P. Gao, M. Qiu, L. Liu, P.P. Yang, Efficient charge separation from F- selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production, ACS Appl. Mater. Inter., 10 (2018) 19633-19638.[38] S.C. Gao, X.H. Wang, H.Z. Liu, T. He, Y.Y. Wang, S.Q. Li, M, Yan, Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2, J. Power Source, 438 (2019) 227006.[39] J.C. Liu, Y.N. Liu, Z.B. Liu, Z.L. Ma, Y.J. Ding, Y.F. Zhu, Y. Zhang, J.G. Zhang, L.Q. Li, Effect of rGO supported NiCu derived from layered double hydroxide on hydrogen sorption kinetics of MgH2, J. Alloy. Compd., 789 (2019) 768-776.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。