含有氧化铜空穴传输层的硒化碲光伏电池性能的模拟研究任务书

 2021-10-25 21:40:14

1. 毕业设计(论文)的内容和要求

硒化锑(Sb2Se3)具有正交晶体结构,是一种p型半导体材料。

它具有高吸收系数(>105cm-1)、合适的带隙(1.2eV)、低毒、储量丰富,是一种潜在的优秀光伏材料。

2009年,硒化锑薄膜才开始作为电池的吸收层,转换效率仅有0.66%。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求指标点10.2,建议开题报告和毕业论文的涉及英文文献不少于30篇,以下是与本课题相关的部分文献, 请学生根据需要自行补充。

[1] Wang X, Tang R, Yin Y, et al. Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells[J]. Solar Energy Materials and Solar Cells, 2019,189:5-10.[2] Tao J, Hu X, Xue J, et al. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells[J]. Solar Energy Materials and Solar Cells, 2019,197:1-6.[3] Zhang J, Kondrotas R, Lu S, et al. Alternative back contacts for Sb2Se3 solar cells[J]. Solar Energy, 2019,182:96-101.[4] Guo H, Chen Z, Wang X, et al. Enhancement in the Efficiency of Sb2Se3 Thin-Film Solar Cells by Increasing Carrier Concertation and Inducing Columnar Growth of the Grains[J]. Solar RRL, 2019,3(3):1800224.[5] Lee H, Yang W, Tan J, et al. Cu-Doped NiOx as an Effective Hole-Selective Layer for a High-Performance Sb2Se3 Photocathode for Photoelectrochemical Water Splitting[J]. ACS Energy Letters, 2019,4(5):995-1003.[6] Ou C, Shen K, Li Z, et al. Bandgap tunable CdS:O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2019,194:47-53.[7] Li Z, Liang X, Li G, et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells[J]. Nature Communications, 2019,10(1).[8] Tao J, Hu X, Guo Y, et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells[J]. Nano Energy, 2019,60:802-809.[9] Kondrotas R, Zhang J, Wang C, et al. Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition[J]. Solar Energy Materials and Solar Cells, 2019,199:16-23.[10] Guo H, Chen Z, Wang X, et al. Significant increase in efficiency and limited toxicity of a solar cell based on Sb2Se3 with SnO2 as a buffer layer[J]. Journal of Materials Chemistry C, 2019,7(45):14350-14356.[11] Tang R, Zheng Z, Su Z, et al. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film[J]. Nano Energy, 2019,64:103929.[12] Hu X, Tao J, Weng G, et al. Investigation of electrically-active defects in Sb2Se3 thin-film solar cells with up to 5.91% efficiency via admittance spectroscopy[J]. Solar Energy Materials and Solar Cells, 2018,186:324-329.[13] Hutter O S, Phillips L J, Durose K, et al. 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer[J]. Solar Energy Materials and Solar Cells, 2018,188:177-181.[14] Wen X, Chen C, Lu S, et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency[J]. Nature Communications, 2018,9(1) :2179.[15] Zhou Y, Wang L, Chen S, et al. Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries[J]. Nature Photonics, 2015,9(6):409.[16] Wang L, Li D, Li K, et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer[J]. Nature Energy, 2017,2:17046.[17] Li G, Li Z, Liang X, et al. Improvement in Sb2Se3 Solar Cell Efficiency through Band Alignment Engineering at the Buffer/Absorber Interface[J]. ACS Applied Materials Interfaces, 2018,11(1):828-834.[18] Hu X, Tao J, Chen S, et al. Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition[J]. Solar Energy Materials and Solar Cells, 2018,187:170-175.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。