阳离子无序富锂氧化物电极材料的氟掺杂及储锂性能研究任务书

 2021-11-04 20:59:30

1. 毕业设计(论文)的内容和要求

本课题以阳离子无序Li过量的过渡金属氧化物材料为研究对象,通过F掺杂对材料微观结构进行调控,以此来抑制充电过程氧的损失。

研究内容包括Li过量阳离子无序材料脱/嵌Li反应机制的探讨,F掺杂改性对微观结构以及电化学性能的影响。

最后把整个研究内容写成毕业论文。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求指点10.2,毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的英文文献不少于20篇,其中近5年不少于8篇,英文文献不少于5篇。

以下是与本课题相关的部分文献列表: [1] Kuezma, M.; Dominko, R.; Hanzel, D.; Kodre, A.; Arcon, I.; Meden, A.; Gaberscek, M. Detailed In Situ Investigation of the Electrochemical Processes in Li2FeTiO4 Cathodes. J. Electrochem. Soc. 2009, 156 (10), A809-A816.[2] Yang, M.; Zhao, X. Y.; Bian, Y. J.; Ma, L. Q.; Ding, Y.; Shen, X. D. Cation Disordered Rock Salt Phase Li2CoTiO4 as A Potential Cathode Material for Li-Ion Batteries. J. Mater. Chem. 2012, 22 (13), 6200-6205.[3] Kuzma M.; Dominko R.; Meden A.; Makovec D.; Bele M.; Jamnik J.; Gaberscek M.; Electrochemical Activity of Li2FeTiO4 and Li2MnTiO4 as Potential Active Materials for Li Ion Batteries: A Comparison with Li2NiTiO4, J. Power Sources 2009, 189, 81-88.[4] Prabaharan, S. R. S.; Michael, M. S.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Li2NiTiO4 - A New Positive Electrode for Lithium Batteries: Soft-Chemistry Synthesis and Electrochemical Characterization. Solid State Ion. 2004, 172 (1-4), 39-45.[5] Cambaz, M. A.; Vinayan, B. P.; Euchner, H.; Johnsen, R. E.; Guda, A. A.; Mazilkin, A.; Rusalev, Y. V.; Trigub, A. L.; Gross, A.; Fichtner, M. Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNi0.5M0.5O2 Binary Systems. ACS Appl. Mater. Interfaces 2018, 10 (26), 21957-21964.[6]Ren, S. H.; Chen, R. Y.; Maawad, E.; Dolotko, O.; Guda, A. A.; Shapovalov, V.; Wang, D.; Hahn, H.; Fichtner, M. Improved Voltage and Cycling for Li Intercalation in High-Capacity Disordered Oxyfluoride Cathodes. Adv. Sci. 2015, 2 (10), 1500128.[7] Chen, R. Y.; Witte, R.; Heinzmann, R.; Ren, S. H.; Mangold, S.; Hahn, H.; Hempelmann, R.; Ehrenberg, H.; Indris, S. Identifying the Redox Activity of Cation-Disordered Li-Fe-V-Ti Oxide Cathodes for Li-Ion Batteries. Phys. Chem. Chem. Phys. 2016, 18 (11), 7695-7701.[8] Takeda, N.; Hoshino, S.; Xie, L.; Chen, S.; Ikeuchi, I.; Natsui, R.; Nakura, K.; Yabuuchi, N. Reversible Li Storage for Nanosize Cation/anion-Disordered Rocksalt-Type Oxyfluorides: LiMoO2-xLiF (0 ≤ x ≤ 2) Binary System. J Power Sources 2017, 367, 122-129.[9] Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science 2014, 343 (6170), 519-522.[10] Urban, A.; Lee, J.; Ceder, G. The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes. Adv. Energy Mater. 2014, 4 (13), 1400478.[11] Yabuuchi, N.; Takeuchi, M.; Nakayama, M.; Shiiba, H.; Ogawa, M.; Nakayama, K.; Ohta, T.; Endo, D.; Ozaki, T.; Inamasu, T.; Sato, K.; Komaba, S. High-capacity Electrode Materials for Rechargeable Lithium Batteries: Li3NbO4-Based System with Cation-Disordered Rocksalt Structure. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (25), 7650-7655.[12] Chen, R. Y.; Ren, S. H.; Knapp, M.; Wang, D.; Witter, R.; Fichtner, M.; Hahn, H. Disordered Lithium-Rich Oxyfluoride as A Stable Host for Enhanced Li Intercalation Storage. Adv. Energy Mater. 2015, 5 (9), 1401814.[13] Lee, J. Y.; Papp, J. K.; Clement, R. J.; Sallis, S.; Kwon, D. H.; Shi, T.; Yang, W. L.; McCloskey, B. D.; Ceder, G. Mitigating Oxygen Loss to Improve the Cycling Performance of High Capacity Cation-Disordered Cathode Materials. Nat. Commun. 2017, 8, 981.[14] Yang, M.; Zhao, X. Y.; Ma, L. Q.; Yang, H.; Shen, X. D.; Bian, Y. J. Electrochemical Performance of Nanocrystalline Li2CoTiO4 Cathode Materials for Lithium Ion Batteries. J. Alloy. Compd. 2015, 618, 210-216.[15] Lee, J.; Seo, D. H.; Balasubramanian, M.; Twu, N.; Li, X.; Ceder, G. A New Class of High Capacity Cation-Disordered Oxides for Rechargeable Lithium Batteries: Li-Ni-Ti-Mo Oxides. Energy Environ. Sci. 2015, 8 (11), 3255-3265.[16] Li, B.; Jiang, N.; Huang, W. F.; Yan, H. J.; Zuo, Y. X.; Xia, D. G. Thermodynamic Activation of Charge Transfer in Anionic Redox Process for Li-Ion Batteries. Adv. Funct. Mater. 2018, 28 (4), 1704864.[17] Glazier, S. L.; Li, J.; Zhou, J.; Bond, T.; Dahn, J. R. Characterization of Disordered Li(1 x)Ti2xFe(1-3x)O2 as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory. Chem. Mater. 2015, 27 (22), 7751-7756.[18] M. Yang, J. Jin, Y. Shen, S. Sun, Y. Zhao, X. Shen. Cation-Disordered Lithium-Excess LiFeTi Oxide Cathode Materials for Enhanced Li-Ion Storage. ACS Appl. Mater. Interfaces, 2019, 11 (47): 4414444152.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。