全文总字数:6819字
1. 毕业设计(论文)的内容和要求
本课题组采用等体积溶液浸渍法制备NiO/NaF催化剂,在4%活性组分最佳负载量的基础上,重点研究过渡金属掺杂对NiO/NaF催化剂蒸汽重整甲醛制氢性能的影响。
通过该毕业论文,能够系统培养学生文献检索和阅读、实验设计和实践、设备操作、数据归纳整理、理论验证、论文撰写等能力,提高学生理论研究和实践技能及分析解决复杂问题的综合素质。
本毕业课题包含以下具有价值的科学问题:1. 探索NiO/NaF对以甲醛为代表的含氧有机废气重整制氢的可行性;2. 解决重整制氢催化剂失效后难以再生循环使用的应用瓶颈问题; 3. 解析NiO/NaF催化剂重整制氢催化机理。
2. 实验内容和要求
根据毕业要求指点4.2,本课题要开展的实验内容和要求如下:1. 探究过渡金属掺杂的NiO/NaF催化剂蒸汽重整甲醛的制氢性能(选择性、转化率),要求学生能够熟练操作气相色谱仪以及实验装置的搭建。
2.对过渡金属掺杂的NiO/NaF催化剂进行XRD表征测试,要求学生能够熟练操作X射线衍射分析仪器,并学会用jade、origin软件对数据进行处理,获得样品的物相组成。
3. 对过渡金属掺杂的NiO/NaF催化剂进行SEM表征测试,要求学生能够准确观察样品形貌特征。
3. 参考文献
1. Chu, L.; Shen, Y., Hydrogen production from formaldehyde steam reforming using recyclable NiO/NaCl catalyst. Applied Surface Science 2020, 532, 147376.2. Chu, L.; Gu, S.; Jin, Q.; Zhu, P.; Shen, Y.; Li, P., Hydrogen production from formaldehyde steam reforming using recyclable NiO/NaF catalyst. International Journal of Hydrogen Energy 2020.3. Cai, W.; Wang, F.; Zhan, E.; Vanveen, A.; Mirodatos, C.; Shen, W., Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis 2008, 257 (1), 96-107.4. Abou Rached, J.; El Hayek, C.; Dandah, E.; Gennequin, C.; Aouad, S.; Tidahy, H. L.; Estephane, J.; Nsouli, B.; Aboukais, A.; Abi-Aad, E., Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production. International Journal of Hydrogen Energy 2017, 42 (17), 12829-12840.5. Liang, S.; Chen, S.; Guo, Z.; Lan, Z.; Kobayashi, H.; Yan, X.; Li, R., In situ generated electron-deficient metallic copper as the catalytically active site for enhanced hydrogen production from alkaline formaldehyde solution. Catalysis Science Pieterse, J. A. Z.; Poelman, H.; Longo, A.; Sabbe, M. K.; Virginie, M.; Detavernier, C.; Marin, G. B.; Galvita, V. V., Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming. Applied Catalysis B: Environmental 2020, 267, 118691.7. Palm, M. O.; Silva Jnior, M. E.; Cardoso, L. R.; Duarte, D. A.; Catapan, R. C., On the Effect of the Washcoat on the Partial Oxidation and Steam Reforming of Ethanol on Ni/Al2O3 Monolith in Short-Contact-Time Reactors. Energy Wang, Y. R.; Sun, K.; Shao, Y. W.; Zhang, L. J.; Zhang, S.; Zhang, X.; Liu, Q.; Chen, Z. H.; Hu, X., Steam reforming of acetic acid over NiBa/Al2O3 catalysts: Impacts of barium addition on coking behaviors and formation of reaction intermediates. Journal of Energy Chemistry 2020, 43, 208-219.9. Villagran-Olivares, A. C.; Gomez, M. F.; Lpez, C.; Barroso, M. N.; Abello, M. C., Effect of EDTA in preparation of Ni catalysts toward a carbon-resistant ethanol reforming. Applied Catalysis B: Environmental 2020, 264, 118510.10. Kapoor, S.; Barnabas, F. A.; Sauer, M. C.; Meisel, D.; Jonah, C. D., Kinetics of hydrogen formation from formaldehyde in basicbaqueous-solutions. Journal of Physical Chemistry 1995, 99 (18), 6857-6863.11. Ashby, E. C.; Doctorovich, F.; Liotta, C. L.; Neumann, H. M.; Barefield, E. K.; Konda, A.; Zhang, K.; Hurley, J.; Siemer, D. D., Concerning the formation of hydrogen in nuclear waste - quantitative generation of hydrogen via a cannizzaro intermedia. Journal of the American Chemical Society 1993, 115 (3), 1171-1173.12. Bi, Y.; Lu, G., Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. International Journal of Hydrogen Energy 2008, 33 (9), 2225-2232.13. Bo, J. Y.; Zhang, S. r.; Lim, K. H., Steam reforming of formaldehyde on Cu(100) Surface: a density functional study. Catalysis Letters 2009, 129 (3-4), 444-448.14. Greeley, J.; Mavrikakis, M., Methanol decomposition on Cu(111): A DFT study. Journal of Catalysis 2002, 208 (2), 291-300.15. Mei, D.; Xu, L.; Henkelman, G., Potential Energy Surface of Methanol Decomposition on Cu(110). Journal of Physical Chemistry C 2009, 113 (11), 4522-4537.16. Lim, K. H.; Chen, Z. X.; Konstantin, M., Comparative theoretical study of formaldehyde decomposition on Pd, Zn, Cu, and Pd surfaces. The Journal of Physical Chemistry B 2006, 110, 14890-14897.17. Lin, S.; Johnson, R. S.; Smith, G. K.; Xie, D.; Guo, H., Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): Density functional theory studies. Physical Chemistry Chemical Physics 2011, 13 (20), 9622-9631.18. Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H., "Gold rush" in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coordination Chemistry Reviews 2018, 359, 1-31.19. Hu, H.; Jiao, Z.; Ye, J.; Lu, G.; Bi, Y., Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy 2014, 8, 103-109.20. Li, R.; Zhu, X.; Yan, X.; Kobayashi, H.; Yoshida, S.; Chen, W.; Du, L.; Qjan, K.; Wu, B.; Zou, S.; Lu, L.; Yi, W.; Zhou, Y.; Fan, J., Oxygen-controlled hydrogen evolution reaction: molecular oxygen promotes hydrogen production from formaldehyde solution using Ag/MgO nanocatalyst. Acs Catalysis 2017, 7 (2), 1478-1484.21. Li, R.; Zhu, X.; Du, L.; Qian, K.; Wu, B.; Kawabata, S.; Kobayashi, H.; Yan, X.; Chen, W., All-solid-state magnesium oxide supported group VIII and IB metal catalysts for selective catalytic reforming of aqueous aldehydes into hydrogen. International Journal of Hydrogen Energy 2017, 42 (16), 10834-10843.
4. 毕业设计(论文)计划
根据毕业要求指点12.2,将整个毕设课题视为一个独立项目,在毕设进行期间,学生要按照计划有序开展,按规定时间节点完成内容,充分考虑本课题全周期、全流程中涉及的经济与管理要素。
本课题各阶段工作内容要求如下:2020.11.09至2020.12.31毕业设计准备,文献检索和准备开题报告。
2021.01.01至2021.02.28撰写开题报告,明确研究方案。
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。