1. 毕业设计(论文)的内容和要求
随着信息技术的不断发展,人们对器件功能及尺寸提出了更高的要求,开发和研制新型的多功能材料成为当务之急。
铁磁性和铁电材料是重要的多功能材料,已在现代科技中得到广泛应用。
铁磁性材料具有固有磁矩,并可随外磁场变化而翻转,能够实现信息存储。
2. 参考文献
[1] Sufyan, M., et al., Magnetically driven robust polarization in (1-x)BiFeO3-xPbTiO3 multiferroic composites. Materials Letters, 2019. 238: p. 10-12.[2] Katoch, R., et al., Spin phonon interactions and magnetodielectric effects in multiferroic BiFeO3-PbTiO3. Journal of Physics: Condensed Matter, 2016. 28(7): p. 075901.[3] Upadhyay, C., et al., Extraordinary enhancement of Nel transition temperature in nanoparticles of multiferroic tetragonal compositions of (1-x)BiFeO3-xPbTiO3 solid solutions. Applied Physics Letters, 2015. 106(9): p. 093103.[4] Zhuang, J., et al., Local polar structure and multiferroic properties of (1-x)Bi0.9Dy0.1FeO3-xPbTiO3 solid solution. Journal of Applied Physics, 2014. 116(6): p. 066809.[5] Bhattacharjee, S., et al., Morin-type spin-reorientation transition below the Nel transition in the monoclinic compositions of (1-x)BiFeO3-xPbTiO3 (x=0.25 and 0.27): A combined dc magnetization and x-ray and neutron powder diffraction study. Physical Review B, 2013. 87(5).[6] Topolov, V.Y., Heterophase states and domain effects in solid solutions of (1-x)BiFeO3-xPbTiO3. Journal of Applied Physics, 2012. 111(9): p. 094109.[7] Bhattacharjee, S. and D. Pandey, Effect of stress induced monoclinic to tetragonal phase transformation in the multiferroic (1-x)BiFeO3-xPbTiO3 system on the width of the morphotropic phase boundary and the tetragonality. Journal of Applied Physics, 2011. 110(8): p. 084105.[8] Bhattacharjee, S., et al., Temperature-induced isostructural phase transition, associated large negative volume expansion, and the existence of a critical point in the phase diagram of the multiferroic (1-x)BiFeO3-xPbTiO3 solid solution system. Physical Review B, 2011. 84(10).[9] Bhattacharjee, S., et al., Simultaneous changes of nuclear and magnetic structures across the morphotropic phase boundary in (1-x)BiFeO3-xPbTiO3. Applied Physics Letters, 2010. 97(26): p. 262506.[10] Leist, T., et al., Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics. Journal of Applied Physics, 2010. 108(1): p. 014103.[11] Narayan, B., et al., Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nature Materials, 2018. 17(5): p. 427-431.[12] Khan, M.A., T.P. Comyn and A.J. Bell, Leakage mechanisms in bismuth ferrite-lead titanate thin films on Pt∕Si substrates. Applied Physics Letters, 2008. 92(7): p. 072908.[13] Bhattacharjee, S., S. Tripathi and D. Pandey, Morphotropic phase boundary in (1-x)BiFeO3-xPbTiO3: phase coexistence region and unusually large tetragonality. Applied Physics Letters, 2007. 91(4): p. 042903.[14] Khan, M.A., T.P. Comyn and A.J. Bell, Large remanent polarization in ferroelectric BiFeO3-PbTiO3 thin films on Pt∕Si substrates. Applied Physics Letters, 2007. 91(3): p. 032901.[15] Zhu, W.M. and Z.G. Ye, Improved dielectric and ferroelectric properties of high Curie temperature (1-x)BiFeO3-xPbTiO3 ceramics by aliovalent ionic substitution. Applied Physics Letters, 2006. 89(23): p. 232904.[16] Khan, M.A., T.P. Comyn and A.J. Bell, Ferroelectric BiFeO/sub 3/-PbTiO/sub 3/ thin films on Pt/Si substrates. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2007. 54(12): p. 2583-2586.[17] Sakamoto, W., et al., Synthesis and Characterization of BiFeO3-PbTiO3 Thin Films through Metalorganic Precursor Solution. Japanese Journal of Applied Physics, 2006. 45(9B): p. 7315-7320.[18] Bhattacharjee, S. and D. Pandey, Stability of the various crystallographic phases of the multiferroic (1-x)BiFeO3-xPbTiO3 system as a function of composition and temperature. Journal of Applied Physics, 2010. 107(12): p. 124112.[19] Gupta, S., et al., Structural changes and ferroelectric properties of BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method. Journal of Applied Physics, 2009. 105(1): p. 014101.[20] Sakamoto, W., A. Iwata and T. Yogo, Ferroelectric properties of chemically synthesized perovskite BiFeO3-PbTiO3 thin films. Journal of Applied Physics, 2008. 104(10): p. 104106.[21] Zhu, W.M., H.Y. Guo and Z.G. Ye, Structural and magnetic characterization of multiferroic (1-x)BiFeO3-xPbTiO3 solid solutions. Physical Review B, 2008. 78(1).[22] 潘祺. 铁酸铋钛酸钡陶瓷磁电耦合性能研究[D].中国科学技术大学,2019.[23] 曹磊. 铁酸铋钛酸钡高温压电陶瓷在高场下的结构转变及电性能研究[D].桂林电子科技大学,2015.[24] 杨华斌. 铁酸铋钛酸钡基高温无铅压电陶瓷电性能及高温稳定性研究[D].中南大学,2013.[25] 石贵阳. 铁酸铋钛酸铅系大功率压电陶瓷及器件的设计、研制与性能[D].上海大学,2013.[26] 陈建国. 铁酸铋钛酸铅多铁性固溶体的掺杂改性及性能表征[D].上海大学,2010.[27] 郭演仪,崔庆,陈熙,冯宝康,刘韦光,王志超,郑芝凤,吴怀良.铁酸铋和铁、锰氧化物改性的锆钛酸铅压电陶瓷[J].无机材料学报,1973(04):38-53.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。