(1-x)Bi0.5(Na0.84K0.16)0.5TiO3-xSr0.7Bi0.2TiO3陶瓷的应变性能研究任务书

 2021-10-21 17:17:56

1. 毕业设计(论文)的内容和要求

本课题针对BNT陶瓷矫顽场过大,较难极化的问题,拟采用掺杂改性的方法获得性能更优的BNT基压电陶瓷。

在Bi0.5(Na0.84K0.16)0.5TiO3体系的基础上引入第三组元Sr0.7Bi0.2TiO3,同时通过非化学计量比主动引入A位空位,通过传统的固相反应法制备,探究不同掺杂量对于样品相结构、微观形貌和极化、应变性能的影响。

最后把整个研究内容写成毕业论文。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的英文文献不少于20篇,其中近5年不少于8篇,英文文献不少于5篇。

以下是与本课题相关的部分文献列表:[1] Xiao Liu, Liu Xiang chun, Shi Jing, et al. Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy [J]. Journal of Materiomics, 2018, 4(3): 202-207.[2] Qiang Li, Ning Li, Hu Bin, et al. Large strain response in (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.8Bi0.1□0.1Ti0.8Zr0.2O2.95 lead-free piezoelectric ceramics[J]. Ceramics International, 2019, 45(2): 1676-1682.[3] Tangyuan Li, Lou Xiaojie, Ke Xiaoqin, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics[J]. Acta Materialia, 2017, 128337-344.[4] Li Jin, Pang Jing, Jing Ruiyi, et al. Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions[J]. Journal of Alloys and Compounds, 2019, 7881182-1192.[5] Liu X, Tan X. Giant Strains in Non-Textured (Bi1/2Na1/2)TiO3-Based Lead-Free Ceramics[J]. Advanced Materials, 2016, 28(3):574-578.[6] Malik R A, Kang J K, Hussain A, et al. High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3-SrTiO3 incipient piezoelectric ceramics[J]. Applied Physics Express, 2014.[7] Yiping Guo, Yun Liu, Withers R L. Large Electric Field-Induced Strain and Antiferroelectric Behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics[J]. Chemistry of Materials, 2011.[8] Zhang S, Yang B, Cao W. The temperature-dependent electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 near the morphotropic phase boundary[J]. Acta Materialia, 2012, 60(2):469-475.[9] Tian C, Wang F, Ye X, et al. Bipolar fatigue-resistant behavior in ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions[J]. Scripta Materialia, 2014,83: 25-28.[10] Glaum J, Zakhozheva M, Acosta M, et al. Influence of B-Site Disorder on the Properties of Unpoled Bi1/2Na1/2TiO3-0.06Ba(ZrxTi1-x)O3 Piezoceramics[J]. Journal of the American Ceramic Society, 2016, 99(8): 2801-2808.[11] Bai W, Chen D, Huang Y, et al. Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics[J]. Ceramics International, 2016, 42(6): 7669-7680.[12] Yu Z, Liu Y, Shen M, et al. Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics[J]. Ceramics International, 2017, 43(10): 7653-7659.[13] Chen J, Wang Y, Zhang Y, et al. Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3[J]. Journal of the European Ceramic Society, 2017, 37(6): 2365-2371.[14] Wu L, Shen B, Hu Q, et al. Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3-BaTiO3)-LiNbO3 piezoelectric ceramics[J]. Journal of the American Ceramic Society, 2017, 100(10): 4670-4679.[15] Li T, Lou X, Ke X, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics[J]. Acta Materialia, 2017, 128: 337-344.[16] Sumang R, Bongkarn T, Kumar N, et al. Investigation of a new lead-free (1-x-y)BNT-xBKT-yBZT piezoelectric ceramics[J]. Ceramics International, 2017, 43: S102-S109.[17] Jin L, Li F, Zhang S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures[J]. Journal of the American Ceramic Society, 2014, 97(1): 1-27.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。