氯化血红素-金属氢氧化物在电催化析氧反应中的应用任务书

 2021-10-23 21:43:53

1. 毕业设计(论文)的内容和要求

本课题将通过氯化血红素与金属氢氧化物的复合设计制备一种含量丰富、价格低廉及低毒高效的析氧反应电催化剂,通过改变金属种类,原料配比及水浴条件等因素对材料结构进行调控,探究催化剂的最佳制备条件。

最后把整个研究内容写成毕业论文。

毕业论文的内容和要求如下:(1)在第1章绪论部分,通过文献阅读和总结分析,给出如下内容:电催化析氧反应(OER)的原理,析氧反应电催化剂的研究现状和存在的问题,本课题拟开展的研究内容和预期目标。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

根据毕业要求指点10.3,毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的中英文文献不少于30篇,其中英文文献不少于5篇,1篇英文文献要翻译为中文。

以下是与本课题相关的部分文献列表:(提供适当参考文献,学生自己按需补充)[1] Du Y S, Cheng G Z, Luo W. NiSe2/FeSe2 nanodendrites:A highly efficient electrocatalyst for oxygen evolution re-action[J]. Catalysis ScienceTechnology,2017, 7(20): 4604-4608.[2] Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5: 4477-4480.[3] Sun X H, Shao Q, Pi Y C, et al. A general approach to synthesise ultrathin NiM (M=Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(17): 7769-7775.[4] Huang J H, Chen J T, Yao T, et al. CoOOH nanosheets with highmass activity forwater oxidation[J]. Angewandte Chemie International Edition, 2015, 54(30):8722-8727.[5] Friebel D, Louie M W, Bajdich M, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting[J]. Journal of the American Chemical Society, 2015, 137(3): 1305-1313.[6] Ping J F, Wang Y X, Lu Q P, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction[J]. Advanced Materials, 2016, 28(35): 7640-7645.[7] Fan K, Chen H, Ji Y F, et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J]. Nature Communications, 2016, 7: 11981-11982.[8] Gong M, Li Y Q, Wang H L, et al. An advanced NiFe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455.[9] Hunter B M, Hieringer W, Winkler J R, et al. Effect of interlayer anions on NiFe-LDH nanosheet water oxidation activity[J]. EnergyEnvironmental Science, 2016, 9(5): 1734-1743.[10] Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5: 4477-4479.[11] Xu L, Jiang Q Q, Xiao ZH, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281.[12] Yang Y, Zhou M, Guo W L, et al. NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation[J]. ElectrochimicaActa, 2015, 174(20): 246-253.[13] Yuan C Z, Wu H B, Xie Y,et al. Mixed transition-metal oxides: Design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504.[14] Yang Y, Fei H L, Ruan G D, et al. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers[J]. ACS Nano, 2014, 8(9): 9518-9523.[15] Xiong X L, You C, Liu Z, et al. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity[J]. ACS Sustainable Chemistry Engineering, 2018, 6(3): 2883-2887.[16] Gao W, Xia Z M, Cao F X, et al. Comprehensive under standing of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Advanced Functional Materials, 2018, 28(11): 1706-1709.[17] Candelaria S L, Bedford N M, Woehl T J, Rentz N S, Showalter A R, Pylypenko S, et al. Multi-component FeNi hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions[J]. ACS Catal. 2017, 7(1):365-379.[18] Sun X H, Shao Q, Pi Y C, et al. A general approach to synthesise ultrathin NiM (M=Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(17): 7769-7775.[19] Qin J S, Du D Y, Guan W, et al. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from wafer[J]. Journal of the American Chemical Society, 2015, 137(22): 7169-7177.[20] Miner E M, Fukushima T, Sheberla D, et al. Electrochemical oxygen reduction catalysed by Ni3(hexaimino-triphenylene)2[J]. Nature Communications, 2016, 7:10942-10943.[21] Kornienko N, Zhao Y B, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135.[22] i S P, Zhang G, Tu X M, et al. Polycrystalline CoP/CoP2 structures for efficient full water splitting[J]. ChemElectroChem, 2018, 5(4): 701-707.[23] Gu Y, Chen S, Ren J, et al. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12 (1): 245-253.[24] Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride(Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting:Oxygen and hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(6): 1502-1504.[25] Jiang H L, Yao Y F, Zhu Y H, et al. Iron carbide nano-particles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts[J]. ACS Applied MaterialsIn-terfaces, 2015, 7(38):21511-21520.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。