物理束缚发泡工艺对PMMA基微孔发泡材料结构及力学性能的影响任务书

 2021-11-21 16:21:05

1. 毕业设计(论文)主要内容:

微孔泡沫由于其质量轻、力学性能好、加工方便等优点,在航空航天、包装、电子工业中得到了广泛的应用。目前国内外生产微孔发泡材料,通常采用超临界CO2或N2在饱和压力和发泡温度下对聚合物进行饱和处理。研究较多的发泡工艺主要有:挤出发泡工艺、模压发泡工艺和吹塑发泡工艺等。在这些工艺中,都存在一个科学问题,即发泡过程中,物理束缚对其结构及力学性能的影响。为了更好的理解物理束缚发泡工艺对PMMA基微孔泡沫结构及力学性能的影响,本课题拟以PMMA为原料,通过调整物理束缚发泡工艺,制得不同结构的微孔发泡材料,并探究工艺对微孔泡沫结构的影响,同时通过力学测试及有限元分析探究结构对微孔泡沫力学性能的影响。

设计(论文)主要内容:

1.文献调研,了解国内外关于PMMA基微孔泡沫的应用背景、研究概况和发展趋势,以及物理束缚发泡工艺对微孔泡沫结构的影响,了解微PMMA基微发泡材料与社会、健康、安全、成本以及环境等因素的关系;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 毕业设计(论文)主要任务及要求

1. 查阅不少于15篇的参考文献(其中近5年英文文献不少于3篇),了解国内外相关研究概况和发展趋势,以及PMMA基微孔发泡复合材料对社会、健康、安全、成本以及环境等的影响,完成开题报告;

2. 总结国内外相关研究概况和发展趋势,以及不同物理束缚发泡工艺对微孔发泡材料结构的影响,并总结PMMA基微孔发泡材料对社会、健康、安全、成本以及环境等的影响;

3.制备具有不同结构的PMMA基微孔泡沫,表征其微孔结构并测试静态力学性能,并利用有限元分析探究结构对微孔泡沫力学性能的影响;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 毕业设计(论文)完成任务的计划与安排

第1-3周:查阅相关文献资料,完成英文翻译。

明确研究内容,了解研究所需原料、仪器和设备。

确定技术方案,并完成开题报告。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 主要参考文献

[1] Ying S J , Chen X R , Luo Y X . Process of Microcellular Propellants with Adjustable Skin Thickness[J]. Defence Technology, 2013, 9(1):53-57.[2] Bai J , Liao X , Huang E , et al. Control of the cell structure of microcellular silicone rubber/nanographite foam for enhanced mechanical performance[J]. Materials Design, 2017,133:288-298.[3] W.Tessanan , P. Phinyocheep , P. Daniel , et al. Microcellular natural rubber using supercritical CO2 technology[J]. Journal of Supercritical Fluids,2019,149:70-78.[4] Li R , Ye N , Shaayegan V , et al. Experimental measurement of CO2, diffusion in PMMA and its effect on microcellular foaming[J]. The Journal of Supercritical Fluids, 2018, 135:180-187.[5] Junsong Li , Xia Liao , Qiuyue Jiang , et al. Creating orientated cellular structure in thermoplastic polyurethane through strong interfacial shear interaction and supercritical carbon dioxide foaming for largely improving the foam compression performance[J]. The Journal of Supercritical Fluids,2019,153:1-15.[6] Ding Y J , Ying S J , Xiao Z L , et al. Cell structure of microcellular combustible object foamed by supercritical carbon dioxide[J]. Defence Technology, 2019,15:419-425.[7] Qu Z , Yin D , Zhou H , et al. Cellular morphology evolution in nanocellular poly (lactic acid)/thermoplastic polyurethane blending foams in the presence of supercritical N2[J]. European Polymer Journal, 2019, 116:291-301.[8] Wang L , Hikima Y , Ishihara S , et al. Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents[J]. Polymer, 2017,128:119-127.[9] Wang G , Zhao J , Wang G , et al. Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties[J]. European Polymer Journal, 2017, 95:382-393.[10] Guozhong Xu, Ruiyuan Gao, Wenwu Jin, et al.Regulation of pore cell structures of coal-based carbon foams based on the nucleation mechanism of microcellular polymer[J]. Ceramics International, 2018,44:11077-11087.[11] Judith Martín-de León, Frederik Van Loock, Victoria Bernardo, et al. The influence of cell size on the mechanical properties of nanocellularPMMA[J].Polymer,2019,181.[12] Zhang R , Zhang L , Zhang J , et al. Compressive response of PMMA microcellular foams at low and high strain rates[J]. Journal of Applied Polymer Science, 2018,135(13):46044-46055.[13] Notario B,Pinto J,Rodriguez-perez M A.Nanoporous polymeric materials:A new class of materials with enhanced properties[J]. Prog Mater Sci,2016,78(79):93-139.[14] Yang G , Su J , Gao J , et al. Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications[J]. Journal of Supercritical Fluids The, 2013, 73:1–9.[15] Sun X,Kharbas H,Peng J,et al.A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness [J]. Polymer,2015,56(15):102-110.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。