1. 毕业设计(论文)的内容和要求
本课题主要通过连续升温热膨胀法,并结合显微组织观察,研究TC4合金在连续升温过程中α到β相转变的显微组织演变;并计算转变激活能和Avrami指数;讨论相转变的机制,为预测钛合金相变和组织演化提供实验基础,也为计算机合金设计提供了必要的实验数据,最后把整个研究内容写成毕业论文。
毕业论文的内容和要求如下: (1)在第1章引言部分,通过文献阅读和总结分析,给出如下内容:钛合金的特色和分类、TC4合金的应用与研究现状、钛合金的相变及相变动力学的研究方法。
本课题拟开展的研究内容和预期目标。
2. 参考文献
根据毕业要求指点2.3和10.2,针对复杂工程问题,具有调查研究、检索与阅读中外文献资料的能力,并能在此基础上进行归纳总结和分析论证,提出解决方案。
毕业论文期间要进行研究现状调查与总结研究现状调查与总结,中英文文献阅读不少于25篇,英文文献不少于10篇。
以下是与本课题相关的部分文献列表:[1] 陈国琳, 吴鹏炜, 冷文军, 等. 钛合金的发展现状及应用前景[J]. 舰船科学技术, 2009, 31(12): 110-113.[2] 舒群, 郭永良, 陈子勇, 等. 铸造钛合金及其熔炼技术的发展现状[J]. 材料科学与工艺, 2004, 12(3): 332-336.[3] 王蕊宁, 杨建朝, 吕利强, 等. 不同热处理工艺对工业TC4合金板材组织和性能的影响[J]. 钛工业进展, 2010, 27(6): 27-29.[4] Guo P, Zhao Y, Zeng W, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys [J]. Materials Science 5Al5Mo5V2Cr1Fe during ageing[J]. Journal of Alloys Compounds, 2015, 629: 260-273.[7] Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Materialia, 2014, 51(6): 1607-1619.[8] Chesnutt J C, Froes F H. Effect of α-phase morphology and distribution on the tensile ductility of a metastable beta titanium alloy[J]. Metallurgical Transactions A, 1977, 8(6): 1013-1017.[9] Makino T, Chikaizumi R, Nagaoka T, et al. Microstructure development in a thermomechanically processed Ti15V3Cr3Sn3Al alloy[J]. Materials Science Engineering A, 1996, 213(s 1-2): 51-60.[10] Froesf H, Yolton C F, Capenos J M, et al. The relationship between microstructure and age hardening response in the metastable beta titanium alloy Ti- 11.5Mo-6Zr-4.5Sn (beta III)[J]. Metallurgical Materials Transactions A, 1980, 11(1): 21-31.[11] 徐洲, 赵连城. 金属固态相变原理[M]. 北京科学出版社, 2004.[12] Teter D F, Robertson I M, Birnbaum H K. The effects of hydrogen on the deformation and fracture of -titanium[J]. Acta Materialia, 2016, 49(20): 4313-4323.[13] Ahmed M, Savvakin D G, Ivasishin O M, et al. Microstructure evolution and alloying elements distribution between the phases in powder near-β titanium alloys during thermo-mechanical processing[J]. Journal of Materials Science, 2015, 47(19): 7013-7025.[14] 武宏让. 航空用钛合金[J]. 钛工业进展, 2000, 2: 30-31.[15] 王世洪, 沈桂琴, 梁佑明. Ti-15V-3Cr-3Sn-3Al合金中的相变研究[J]. 材料工程, 1992, ( s1): 175-177.[16] Furuhara T, Maki T, Makino T. Microstructure control by thermomechanical processing in β-Ti153 alloy[J]. Journal of Materials Processing Technology, 2001, 117(3): 318-323.[17] Rhodes C G, Williams J C. The precipitation of α-phase in metastable β -phase Ti alloys [J]. Metallurgical Transactions A, 1975, 6(11): 2103-2114.[18] Chen W, Yao S, Liu R, et al. Phase Transformation Behavior and Mechanical Properties of Ti-10V-2Fe-3Al Alloy Subjected to Low Temperature Aging[J]. Rare Metal Materials Engineering, 2016, 7: 1726-1731. [19] 徐洲, 赵连城. 高等院校教材:金属固态相变原理[M]. 科学出版社, 2004.[20] 肖纪美. 合金相与相变[M]. 冶金工业出版社, 2004.[21] 冯端. 金属物理学.第二卷,相变[M]. 北京科学出版社, 2000.[22] Christian J W, Otte H M. The Theory of Transformations in Metals and Alloys[M]. Pergamon Press, 1965.[23] Malinov S, Sha W. Application of artificial neural networks for modelling correlations in titanium alloys[J]. Materials Science Engineering A, 2004, 365(1): 202-211.[24] Malinov S, Sha W. Modeling thermodynamics, kinetics, and phase transformation morphology while heat treating titanium alloys [J]. JOM, 2015, 57(9): 42-45.[25] Wang Y Z, Ma N, Chen Q, et al. Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys[J]. JOM, 2005, 57(9): 32-39.[26] Malinov S, Markovsky P, Sha W. Resistivity study and computer modelling of the isothermal transformation kinetics of Ti8Al1Mo1V alloy[J]. Journal of Alloys Compounds, 2002, 333(1): 122-132.[27] Malinov S, Sha W, Guo Z, et al. Synchrotron X-ray diffraction study of the phase transformations in titanium alloys[J]. Materials Characterization, 2001, 48(4): 279-295.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。