1. 毕业设计(论文)的内容和要求
本课题主要研究2wt.% Fe添加以及热压缩对Ti-2Fe合金显微组织及热塑性的影响。
钛及钛合金具有高比强度、强耐蚀性以及优良的高温稳定性等优势,现已广泛用于航空工业、海洋船舶、汽车及生物医学等领域,是现代工业和民用领域中不可或缺的结构材料。
Ti-2Fe合金是近几年被设计出的新型合金,它具有良好综合性能,其拉伸强度高,抗腐蚀性强,是用于海洋船舶领域的理想材料。
2. 参考文献
根据毕业要求指点2.3和10.2,针对复杂工程问题,具有调查研究、检索与阅读中外文献资料的能力,并能在此基础上进行归纳总结和分析论证,提出解决方案。
毕业论文期间要进行研究现状调查与总结研究现状调查与总结,中英文文献阅读不少于25篇,英文文献不少于10篇。
以下是与本课题相关的部分文献列表:[1] 彭昂, 毛振东. 钛合金的研究进展与应用现状[J]. 船电技术, 2012, 32(10): 57-60.[2] 李献民, 刘立, 董洁,等. 钛及钛合金材料经济性及低成本方法论述[J]. 中国材料进展, 2015, 34(5):401-406.[3] Wang G, Hui S, Ye W, et al. Microstructure and tensile properties of low cost titanium alloys at different cooling rate[J]. Rare Metals, 2012, 31(6): 531-536.[4] 杨英丽, 苏航标, 郭荻子, 等. 我国舰船钛合金的研究进展[J]. 中国有色金属学报, 2010, 1: s1002-s1007.[5] Rahman M, Wang Z, Wong Y. A Review on High-Speed Machining of Titanium Alloys[J]. JSME International Journal Series C, 2006, 49(1):11-20.[6] 李珍, 孙建科. 低成本钛合金的开发与应用[J]. 稀有金属材料与工程, 2008, 37(S3): 973-976.[7] Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloysAn overview[J]. Materials Science and Engineering: A, 1999, 263(2): 243-256.[8] Faller K, Froes F H S. The use of titanium in family automobiles: Current trends[J]. JOM, 2001, 53(4): 27-28.[9] 张大军, 张凤杰. 钛合金在汽车轻量化中的应用[J]. 钛工业进展,2007,24(1):32-36.[10] Qu F S, Reng Z Y, Ma R R, et al. The research on the constitutive modeling and hot working characteristics of as-cast V5Cr5Ti alloy during hot deformation[J]. Journal of alloys and compounds, 2016, 663: 552-559.[11] 王振国. 新型TiAlCrFe系低成本钛合金的组织与性能研究[D]. 北京有色金属研究总院, 2013.[12] Turner P C, Hansen J S. Progress toward low-cost titanium[J]. Advanced Materials and Processes;(United States), 1993, 143(1):42.[13] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 冶金工业出版社, 2009.[14] 辛社伟, 赵永庆, 曾卫东. 钛合金固态相变的归纳与讨论(Ⅱ)共析和有序化转变[J]. 钛工业进展, 2008, 25(1): 40-44.[15] Boyer R, Welsch G,Collings E W. Materials Properties Handbook [M]. ASM International, 1994.[16] Krumphals F, Wlanis T, Sievert R, et al. Damage analysis of extrusion tools made from the austenitic hot work tool steel Bhler W750[J]. Computational materials science, 2011, 50(4): 1250-1255.[17] Nicaise N, Berbenni S, Wagner F, et al. Coupled effects of grain size distributions and crystallographic textures on the plastic behaviour of IF steels[J]. International Journal of Plasticity, 2011, 27(2): 232-249.[18] Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials Design, 2011, 32(4): 1733-1759.[19] Zhao J, Ding H, Zhao W, et al. Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network[J]. Computational Materials Science, 2014, 92: 47-56.[20] Kai X, Chen C, Sun X, et al. Hot deformation behavior and optimization of processing parameters of a typical high-strength AlMgSi alloy[J]. Materials Design, 2016, 90: 1151-1158.[21] Cai J, Li F, Liu T, et al. Constitutive equations for elevated temperature flow stress of Ti6Al4V alloy considering the effect of strain[J]. Materials Design, 2011, 32(3): 1144-1151.[22] Daosheng W, Beibei K, Shouren W, et al. Effect of hydrogen on the flow behavior of a TiAl based alloy during plane strain compression at elevated temperature[J]. International Journal of Hydrogen Energy, 2019.[23] Dong S, Chen R, Guo J, et al. Deformation behavior and microstructural evolution of directionally solidified TiAlNb-based alloy during thermo-compression at 13731573 K[J]. Materials Design, 2015, 84: 118-132.[24] Guo B, Semiatin S L, Jonas J J. Dynamic transformation during the high temperature deformation of two-phase titanium alloys[J]. Materials Science and Engineering: A, 2019: 138047.[25] Yang J, Wang G, Jiao X, et al. High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy[J]. Materials Characterization, 2018, 137: 170-179.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。