双光束激发增强石墨烯/钙钛矿复合结构的激光发射任务书

 2021-10-24 15:40:11

1. 毕业设计(论文)的内容和要求

基于钙钛矿优良光电特性,其在激光领域取得了广泛的研究成果。

但由于强光照、高温条件下较差的稳定性阻碍了钙钛矿进一步的发展。

表面等离激元起源于金属界面上自由电子的集体振荡,可以与电磁波耦合,从而导致表面等离激元极化子(SPPs)和局部表面等离振子共振(LSPR)的激发。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

1. Li D, Kaner R B. Graphene-based materials[J]. Science, 2008, 320(5880): 1170-1171.2. Gao W, Shi G, Jin Z, et al. Excitation and active control of propagating surface plasmon polaritons in graphene[J]. Nano letters, 2013, 13(8): 3698-3702.3. Qin F F, Xu C X, Zhu Q X, et al. Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons[J]. Nanoscale, 2018, 10(2): 623-627.4. Chen J, Zhou S, Jin S, et al. Crystal organometal halide perovskites with promising optoelectronic applications[J]. Journal of Materials Chemistry C, 2016, 4(1): 11-27.[5]. Xing Guichuan,Mathews Nripan,Sun Shuangyong,Lim Swee Sien,Lam Yeng Ming,Grtzel Michael,Mhaisalkar Subodh,Sum Tze Chien. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.[J]. Science (New York, N.Y.),2013,342(6156).[6]. Yin, Yin, Wang, Jiawei, Lu, Xueyi, Hao, Qi, Saei Ghareh Naz, Ehsan, Cheng, Chuanfu, Ma, Libo, Schmidt, Oliver G..In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities[J].ACS Nano,2018:acsnano.8b00957.[7]. Zhang C, Wang K, Yi N, et al. Improving the Performance of a CH3NH3PbBr3 Perovskite Microrod Laser through Hybridization with Few‐Layered Graphene[J]. Advanced Optical Materials, 2016, 4(12): 2057-2062.[8] Liao Q, Hu K, Zhang H, et al. Perovskite Microdisk Microlasers Self-Assembled from Solution[J]. Adv Mater, 2015, 27(22): 3405-10.[9] Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Lett, 2014, 14(10): 5995-6001.[10] Deschler F, Price M, Pathak S, et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors[J]. J Phys Chem Lett, 2014, 5(8): 1421-6.[11] Sutherland B R, Hoogland S, Adachi M M, et al. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators[J]. Acs Nano, 2014, 8(10): 10947-10952.[12] Zhang Q, Su R, Liu X, et al. High-Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets[J]. Advanced Functional Materials, 2016, 26(34): 6238-6245.[13] Zhang N, Wang K, Wei H, et al. Postsynthetic and Selective Control of Lead Halide Perovskite Microlasers[J]. J Phys Chem Lett, 2016, 7(19): 3886-3891.[14] Sun W, Wang K, Gu Z, et al. Tunable perovskite microdisk lasers[J]. Nanoscale, 2016, 8(16): 8717-21.[15] Saliba M, Wood S M, Patel J B, et al. Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser[J]. Adv Mater, 2016, 28(5): 923-9.[16] Chen S, Roh K, Lee J, et al. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films[J]. ACS Nano, 2016, 10(4): 3959-67.[17] Liu S, Sun W, Gu Z, et al. Tailoring the lasing modes in CH3NH3PbBr3 perovskite microplates via micro-manipulation[J]. Rsc Advances, 2016, 6(56): 50553-50558.[18] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.[19] Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nat Mater, 2004, 3(9): 601-5.[20] Cui J, Chen C, Han J, et al. Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells[J]. Adv Sci (Weinh), 2016, 3(3): 1500312

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。