1. 毕业设计(论文)的内容和要求
XRDautolab
2. 参考文献
[1] Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei, Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 141 (2019) 467-480.[2] D. Wang, L. Xu, J. Nai, X. Bai, T. Sun, Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte, Applied Surface Science, 473 (2019) 1014-1023.[3] T.-N. Tran, H. Jung Kim, J.S. Samdani, J.Y. Hwang, B.-C. Ku, J. Kwan Lee, J.-S. Yu, A facile in-situ activation of protonated histidine-derived porous carbon for electrochemical capacitive energy storage, Journal of Industrial and Engineering Chemistry, 73 (2019) 316-327.[4] L. Lu, Y. Zhu, F. Li, W. Zhuang, K.Y. Chan, X. Lu, Carbon titania mesoporous composite whisker as stable supercapacitor electrode material, Journal of Materials Chemistry, 20 (2010).[5] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv Mater, 26 (2014) 2219-2251, 2283.[6] G.A. Ferrero, M. Sevilla, A.B. Fuertes, Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors, Carbon, 88 (2015) 239-251.[7] K. Krishnamoorthy, P. Pazhamalai, S.-J. Kim, Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials, Energy Environmental Science, 11 (2018) 1595-1602.[8] B. Kr黱er, A. Schreiber, A. Tolosa, A. Quade, F. Badaczewski, T. Pfaff, B.M. Smarsly, V. Presser, Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors, Carbon, 132 (2018) 220-231.[9] R.-J. Mo, Y. Zhao, M.-M. Zhao, M. Wu, C. Wang, J.-P. Li, S. Kuga, Y. Huang, Graphene-like porous carbon from sheet cellulose as electrodes for supercapacitors, Chemical Engineering Journal, 346 (2018) 104-112.[10] K.W. Prasadini, K.S. Perera, K.P. Vidanapathirana, 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate-based gel polymer electrolyte for application in electrochemical double-layer capacitors, Ionics, 25 (2018) 2805-2811.[11] L. Tang, Y. Zhou, X. Zhou, Y. Chai, Q. Zheng, D. Lin, Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature, Journal of Materials Science: Materials in Electronics, 30 (2018) 2600-2609.[12] R.T. Woodward, F. Markoulidis, F. De Luca, D.B. Anthony, D. Malko, T.O. McDonald, M.S.P. Shaffer, A. Bismarck, Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices, Journal of Materials Chemistry A, 6 (2018) 1840-1849.[13] X. Xie, X. He, H. Zhang, F. Wei, N. Xiao, J. Qiu, Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors, Chemical Engineering Journal, 350 (2018) 49-56.[14] L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, Z. Zheng, Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density, Adv Mater, 30 (2018).[15] Q. Zhang, K. Han, S. Li, M. Li, J. Li, K. Ren, Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors, Nanoscale, 10 (2018) 2427-2437.[16] P.K. Adusei, S.N. Kanakaraj, S. Gbordzoe, K. Johnson, D. DeArmond, Y.-Y. Hsieh, Y. Fang, S. Mishra, N. Phan, N.T. Alvarez, V. Shanov, A scalable nano-engineering method to synthesize 3D-graphene-carbon nanotube hybrid fibers for supercapacitor applications, Electrochimica Acta, 312 (2019) 411-423.[17] F. Ding, Z. Yu, X. Chen, X.a. Chen, C. Chen, Y. Huang, Z. Yang, C. Zou, K. Yang, S. Huang, High-performance supercapacitors based on reduced graphene oxide -wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions, Electrochimica Acta, 306 (2019) 549-557.[18] S.T. Gunday, E. Cevik, A. Yusuf, A. Bozkurt, Nanocomposites composed of sulfonated polysulfone/hexagonal boron nitride/ionic liquid for supercapacitor applications, Journal of Energy Storage, 21 (2019) 672-679.[19] J. Lang, X. Zhang, L. Liu, B. Yang, J. Yang, X. Yan, Highly enhanced energy density of supercapacitors at extremely low temperatures, Journal of Power Sources, 423 (2019) 271-279.[20] H. Liu, H. Yu, Ionic liquids for electrochemical energy storage devices applications, Journal of Materials Science Technology, 35 (2019) 674-686.[21] T. Mao, S. Wang, X. Wang, F. Liu, J. Li, H. Chen, D. Wang, G. Liu, J. Xu, Z. Wang, High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte, ACS Appl Mater Interfaces, 11 (2019) 17742-17750.[22] S. Sathyamoorthi, M. Sawangphruk, A simple and practical hybrid ionic liquid/aqueous dual electrolyte configuration for safe and ion-exchange membrane-free high cell potential supercapacitor, Electrochimica Acta, 305 (2019) 443-451.[23] C. Song, J. Yun, K. Keum, Y.R. Jeong, H. Park, H. Lee, G. Lee, S.Y. Oh, J.S. Ha, High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte, Carbon, 144 (2019) 639-648.[24] M. Suominen, P. Damlin, C. Kvarnstr鰉, Electrolyte effects on formation and properties of PEDOT-graphene oxide composites, Electrochimica Acta, 307 (2019) 214-223.[25] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion,Handbook of Clean Energy Systems2015, pp. 1-25.[26] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv Mater, 23 (2011) 4828-4850.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。