碳材料与氧化石墨烯复合对超级电容器的性能研究任务书

 2022-01-23 20:37:21

全文总字数:5492字

1. 毕业设计(论文)的内容和要求

本课题研究碳材料与氧化石墨烯材料的超级电容器的性能,不同温度的碳化,不同复合材料的质量比的碳化,然后结合扫描电镜、红外光谱、XRD、热重分析和氮气吸附脱附等表征分析手段对其复合材料进行表征,采用autolab电化学工作站进行电化学性能测试,包括循环伏安法,充放电测试以及阻抗测试,来进一步研究其复合材料的性能。

2. 实验内容和要求

研究不同温度、不同复合材料质量比的碳化,采用各种方式进行材料表征,把复合材料制成三电极体系的工作电极,进行电化学性能测试,找到最佳的碳化温度,最佳的碳化质量比。

要求能熟练掌握autolab电化学工作站的电化学性能测试,包括循环伏安法,充放电测试及阻抗测试等等;能熟练运用管式炉进行碳化。

3. 参考文献

1. Mohammed, A. A.;Chen, C.; Zhu, Z., Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. J Colloid Interface Sci 2019, 538, 308-319.2. Wang, J.;Li, Q.;Peng, C.;Shu, N.;Niu, L.; Zhu, Y., To increase electrochemical performance of electrode material by attaching activated carbon particles on reduced graphene oxide sheets for supercapacitor. Journal of Power Sources 2020, 450.3. Wang, L.;Ouyang, Y.;Jiao, X.;Xia, X.;Lei, W.; Hao, Q., Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chemical Engineering Journal 2018, 334, 1-9.4. Chen, Y.;Liu, Z.;Sun, L.;Lu, Z.; Zhuo, K., Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. Journal of Power Sources 2018, 390, 215-223.5. Qin, K.;Wang, L.;Wen, S.;Diao, L.;Liu, P.;Li, J.;Ma, L.;Shi, C.;Zhong, C.;Hu, W.;Liu, E.; Zhao, N., Designed synthesis of NiCo-LDH and derived sulfide on heteroatom-doped edge-enriched 3D rivet graphene films for high-performance asymmetric supercapacitor and efficient OER. Journal of Materials Chemistry A 2018, 6 (17), 8109-8119.6. Yan, S.-x.;Luo, S.-h.;Feng, J.;Li, P.-w.;Guo, R.;Wang, Q.;Zhang, Y.-h.;Liu, Y.-g.; Bao, S., Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chemical Engineering Journal 2020, 381.7. Wang, M.;Yang, J.;Liu, S.;Hu, C.;Li, S.; Qiu, J., Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Appl Mater Interfaces 2019, 11 (29), 26235-26242.8. Choi, J.-H.;Lee, C.;Cho, S.;Moon, G. D.;kim, B.-s.;Chang, H.; Jang, H. D., High capacitance and energy density supercapacitor based on biomass-derived activated carbons with reduced graphene oxide binder. Carbon 2018, 132, 16-24.9. Xiong, C.;Yang, Q.;Dang, W.;Li, M.;Li, B.;Su, J.;Liu, Y.;Zhao, W.;Duan, C.;Dai, L.;Xu, Y.; Ni, Y., Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction reaction catalyst. Journal of Power Sources 2020, 447.10. Couly, C.;Alhabeb, M.;Van Aken, K. L.;Kurra, N.;Gomes, L.;Navarro-Surez, A. M.;Anasori, B.;Alshareef, H. N.; Gogotsi, Y., Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor. Advanced Electronic Materials 2018, 4 (1).11. Li, X.;Zhou, K.;Zhou, J.;Shen, J.; Ye, M., CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications. Journal of Materials Science Hesari, H.;Noori, A.;Masoomi, M. Y.;Morsali, A.; Mousavi, M. F., A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochimica Acta 2018, 275, 76-86.13. Vikraman, D.;Karuppasamy, K.;Hussain, S.;Kathalingam, A.;Sanmugam, A.;Jung, J.; Kim, H.-S., One-pot facile methodology to synthesize MoS2-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance. Composites Part B: Engineering(Q1) 2019, 161, 555-563.14. Wang, M.;Yang, J.;Jia, K.;Liu, S.;Hu, C.; Qiu, J., Boosting Supercapacitor Performance of Graphene by Coupling with Nitrogen-Doped Hollow Carbon Frameworks. Chemistry 2020, 26 (13), 2897-2903.15. Xiong, C.;Li, B.;Lin, X.;Liu, H.;Xu, Y.;Mao, J.;Duan, C.;Li, T.; Ni, Y., The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Composites Part B: Engineering 2019, 165, 10-46.16. Xu, B.;Wang, H.;Zhu, Q.;Sun, N.;Anasori, B.;Hu, L.;Wang, F.;Guan, Y.; Gogotsi, Y., Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials 2018, 12, 128-136.17. Zhang, C.;Lei, C.;Cen, C.;Tang, S.;Deng, M.;Li, Y.; Du, Y., Interface polarization matters: Enhancing supercapacitor performance of spinel NiCo2O4 nanowires by reduced graphene oxide coating. Electrochimica Acta 2018, 260, 814-822.18. Zhang, Q.;Wang, Y.;Zhang, B.;Zhao, K.;He, P.; Huang, B., 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 2018, 127, 449-458.19. Zhu, J.;Childress, A. S.;Karakaya, M.;Dandeliya, S.;Srivastava, A.;Lin, Y.;Rao, A. M.; Podila, R., Defect-Engineered Graphene for High-Energy- and High-Power-Density Supercapacitor Devices. Adv Mater 2016, 28 (33), 7185-92.20. Zhang, W.;Chen, Z.;Guo, X.;Jin, K.;Wang, Y.;Li, L.;Zhang, Y.;Wang, Z.;Sun, L.; Zhang, T., N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor. Electrochimica Acta 2018, 278, 51-60.

4. 毕业设计(论文)计划

2021.02-2021.03 学习基本理论知识2021.03-2021.04 开题、文献阅读 开题报告2021.04-2021.05 做实验改进方案 进行每周汇报2021.05-2021.06 数据处理,撰写毕业论文

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。