1. 毕业设计(论文)的内容、要求、设计方案、规划等
纤维素是当今世界上资源最丰富、可再生的生物质之一, 相对于其他高分子化合物在结构上具有如下四个优点:纤维素在分子链内和分子链间有大量的经基基团,具有很强的相互作用能力与反应能力;生物相容性比较好;纤维素本身无毒无危害,在生活生产中可以得到广泛应用;科学家证实,微生物可将纤维素完全降解。
本实验主要研究纤维素活性基团对于纳米纤维素复合的影响以及纤维素和纳米氧化锌的复合机理,复合量和强度。
主要研究内容有:1、纤维素游离羟基含量对ZnO晶体在纤维素上成核量影响2、纤维素C6上羧基含量对ZnO晶体在纤维素上成核量影响3、纤维素和纳米氧化锌的复合机理,复合量,强度
2. 参考文献(不低于12篇)
1. Mann A. C. Synthesis, Characterization, and antimicrobial activity of zinc oxide nanoparticles. Springer-Verlag, Berlin Heidelberg, 2012, pp151-1803.2. Zhou J., Xu N. and Wang Z. L. Dissolving behaviour and stability of ZnO wires in biofluids: a study on biodegradability of ZnO nanostructures. Advance Materials, 2006, 18(18): 2432-2435. 3. Nohynek G. J., Dudour E. K. and Roberts M. S. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacology and Physiology, 2008, 21(3): 136-149. 4. Mirhosseini M. and Firouzabadi F. Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. International Journal of Dairy Technology, 2013, 66(2): 291-295.5. Liu H., Yang D., Yang H., Zhang H., Zhang W., Fang Y., Liu Z., Tian L., Lin B., Yan J. Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: silver, zinc oxide and titanium oxide. Journal of Hazardous Materials, 2013, 248: 478-486.6. Feng J. J., Liao Q. C., Wang A. Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications. CrystEngComm, 2011, 13: 4202-4210.7. Baruah S., Jaisai M. and Imani1 R. Photocatalytic paper using zinc oxide nanorods. Science and Technology of Advanced Materials, 2010, 11:1-7.8. 安予生.聚苯胺/氧化锌纳米复合光催化剂的制备及性能研究.安徽大学硕士学位论文, 2014.9. Lanje A. S., Sharma S. J., Ningthoujam R. S., Ahn, J.S. and Pode R. B. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Advanced Powder Technology, 2013, 24: 331-335.10. Huang M. H., Mao S. and Feick H. Room-temperature ultraviolet nano-wire nanolasers. Science, 2001, 292: 1897-1899.11. Xu J. Q., Chen Y. P. and Chen D. Y. Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sensors and Ac-tuators B, 2006, 113: 526-531.12. Lim Z.H., Chia Z.X., Kevin M., Wong A.S.W. and Ho G.W. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sensors and Actuators B-Chemical, 2010, 151(1): 121-126.13. Khan M. F., Hameedullah M., Ansari A. H. Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. International Journal of Nanomedicine, 2014, 9: 853-864. 14. Gomez J.L. and Tigli O. Zinc oxide nanostructures: From growth to application. Journal of Materials Science, 2013, 48(2): 612-624.15. Qu X.R., Lu S.C., Wang J.J., Li Z.Q. and Xue H.J. Preparation and optical property of porous ZnO nanobelts. Materials Science in Semiconductor Processing, 2012, 15(3): 244-250.16. Becheri A., Durr M., Lo Nostro P. and Baglioni P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 2008, 10:679-689.17. Kolodziejczak-Radzimska A. and Jesionowski T. Zinc oxidefrom synthesis to application: a review. Materials, 2014, 7(4): 2833-2881.18. Jesionowski T., Koodziejczak-Radzimska A., Ciesielczyk F., Sjka-Ledakowicz J., Olczyk J. and Sielski J. Synthesis of zinc oxide in an emulsion system and its deposition on PES nonwoven fabrics. Fibers 75.19. Xue C., Wang R., Zhang J., Jia S. and Tian L. Growth of ZnO nanorod forests and characterization of ZnO-coated nylon fibers. Materials Letters, 2010, 64: 327-330.20. Kalia S., Dufresne A. and Cherian B. M. Cellulos-based bio- and nanocomposites: a review. International Journal of Polymer Science, 2011, 10: 1155-1180.21. Isogai A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. Wood Science, 2013, 59:449-459.22. Zhang H., Chen B. and Jiang H. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials, 2011, 32: 1906-1914. 23. Vigneshwaran N., Kumar S., Kathe A.A., Varadarajan P.V. and Prasad V. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology, 2006, 17: 5087-5095. 24. Wang H., Zakirov A., Yuldashev S. U., Lee J., Fu D. and Kang T. ZnO films grown on cotton fibers surface at low temperature by a simple two-step process. Materials Letters, 2011, 65: 1316-1318.25. Xu B. and Cai Z. Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Applied Surface Science, 2008, 254: 5899-5904.26. Wang R., Xin J. H., Tao X. M. and Daoud W. A. ZnO Nanorods grown on cotton fabrics at low temperature. Chemical Physics Letters, 2004, 398: 250255.27. Tanasa D., Vrinceanu N., Nistor A., Aristodor C.M., Popovivi E., Bistricianu I.L., Brinza F., Chicet D.L., Coman, D. and Pui A. Zinc oxide-linen fibrous composites: Morphological, structural, chemical and humidity adsorptive attributes. Textile Research Journal, 2012, 82(8): 832-844. 28. Ghule K., Ghule A.V., Chen B. and Ling Y. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry, 2006, 8:1034-1041.29. John A., Ko H., Kim D. and Kim J. Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization. Cellulose, 2011, 18(3):675-680.30. .Goncalves G., Marques P. A. P., Neto C. P., Trindade T., Peres M., Monteiro T. Growth, structural and optical characterization of ZnO-coated cellulosic fibers. Crystal Growth Design, 2009, 9(1):386-390.31. Zhang G., Morikawa H., Chen Y. and Miura M. In-situ synthesis of ZnO nanoparticles on bamboo pulp fabric. Materials Letters, 2013, 97:184-186.32. Shafei A. El.and Abou-Okeil A. ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydrate Polymers, 2011, 83: 920-925.33. Yadav A., Prasad V., Kathe A. A., Raj S. and Yadav D. Functional finishing in cotton fabrics using zinc oxide nanoparticle. Bulletin of Materials Science, 2006, 29(6):641-645.34. Lu X. and Shen X. Solubility of bacteria cellulose in zinc chloride aqueous solutions, Carbohydrate Polymers, 2011, 86(1): 239-244.35. Cao N.J., Xu Q., Chen C.S., Gong C.S. and Chen L.F. Cellulose hydrolysis using zinc-chloride as a solvent and catalyst. Applied Biochemistry and Biotechnology, 1994, 45: 521-530.36. Leipner H., Fischer S., Brendler E. and Voigt W. Structural changes of cellulose dissolved in molten salt hydrates. Macromolecular Chemistry and Physics, 2000, 201: 2041-2049.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。