1. 毕业设计(论文)主要目标:
论文设计目标:如今,环境污染问题日益严重,人类的健康乃至生命已遭到前所未有的威胁。
光催化技术以太阳能为直接驱动力,可以将低密度的太阳能有效地转化为高密度的化学能,广泛应用于河流污水降解、有机污染物处理等方面。
本文旨在利用氧化锌的压电效应,驱动电子-空穴对的分离,以提高氧化锌光催化性能。
2. 毕业设计(论文)主要内容:
1. 采用水热法,制备纳米氧化锌催化剂2. 对所制备的纳米氧化锌做性能测试,如FESEM、XRD、PL等3. 进行催化降解实验,研究压电效应对光催化性能的作用4. 黑暗条件下进行催化降解实验,研究无光条件下的压电催化机理
3. 主要参考文献
[1] F. Peng, Q. Zhou, D. Zhang, C. Lu, Y. Ni, J. Kou, J. Wang, Z. Xu. Bio-inspired design: Inner-motile multifunctional ZnO/CdS heterostructures magnetically actuated artificial cilia film for photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 165 (2015) 419-427.[2] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4, Nature communications, 4 (2013) 1432.[3] Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook, Energy Environmental Science, 6 (2013) 347.[4] X. Chen, L. Liu, P. Yu, S. Mao. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science 331 (2011) 746-749.[5] D. Voiry, R. Fullon, J. Yang, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen, Nature materials, (2016).[6] H.G. Yang, C.H. Sun, S.Z. Qiao, et al. Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453 (2008) 638-641.[7] I. Lee, J.B. Joo, Y. Yin, F. Zaera. A yolk@shell nanoarchitecture for Au/TiO2 catalysts, Angewandte Chemie, 50 (2011) 10208-10211.[8] D.C. Ratchford, A.D. Dunkelberger, et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films, Nano letters, 17 (2017) 6047-6055.[9] M.F. Koichi Awazu, C. Rockstuhl, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. AM. CHEM. SOC., 130 (2008) 1676-1680.[10] S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, M. Moskovits. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers, Nano letters, 11 (2011) 5548-5552.[11] R. Jiang, B. Li, C. Fang, J. Wang. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications, Advanced materials, 26 (2014) 5274-5309.[12] X. Zhou, G. Liu, J. Yu, W. Fan. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light, Journal of Materials Chemistry, 22 (2012) 21337.[13] C. Boerigter, R. Campana, M. Morabito, S. Linic, Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis, Nature communications, 7 (2016) 10545.[14] M. Kim, M. Lin, J. Son, H. Xu, J.M. Nam. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges, Advanced Optical Materials, 5 (2017) 1700004.[15] H.X. Zhang, Y. Li, M.Y. Li, H. Zhang, J. Zhang, Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation, Nanoscale, 10 (2018) 2236-2241.[16] C. Lee, H. Choi, N. gailov, Y.K. Lee, S. Jeong, J.Y. Park, Enhancement of hot electron flow in plasmonic nanodiodes by incorporating PbS quantum dots, ACS applied materials interfaces, 10 (2018) 5081-5089.[17] M. Murdoch, G.I. Waterhouse, M.A. Nadeem, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO(2) nanoparticles, Nat Chem, 3 (2011) 489-492.[18] J. Pan, G. Liu, G.Q. Lu, H.M. Cheng. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals, Angewandte Chemie, 50 (2011) 2133-2137.[19] R.S.M. William, E. Farneth. Tapping mode atomic force microscopy studies of the photoreduction of Ag on individual submicrometer TiO2 particles, Langmuir : the ACS journal of surfaces and colloids, 15 (1999) 8569-8573.[20] Z.L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today, 5 (2010) 540-552.[21] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect, Nano letters, 15 (2015) 2372-2379.[22] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, Z.L. Wang, Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress, ACS Nano, 10 (2016) 2636-2643.[23] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires, Nano Energy, 13 (2015) 414-422.[24] 王中林. 压电电子学与压电光电子学. 王中林, 张岩, 武文倬, 译. 北京: 科学出版社, 2012: 3-5.[25] N.V. Burbure, P.A. Salvador, G.S. Rohrer. Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity, chemistry of materials, 22 (2010) 5823-5830.[26] N.V. Burbure, P.A. Salvador, G.S. Rohrer. Photochemical reactivity of titania films on BaTiO3 substrates: influence of titania phase and orientation, chemistry of materials, 22 (2010) 5831-5837.[27] A. Bhardwaj, N.V. Burbure, A. Gamalski, G.S. Rohrer. Composition dependence of the photochemical reduction of Ag by Ba1?xSrxTiO3, Chemistry of Materials, 22 (2010) 3527-3534.[28] Y.T. Wang, K.S. Chang, R.J. Xie. Piezopotential-induced schottky behavior of Zn1?xSnO3 nanowire arrays and piezophotocatalytic applications, Journal of the American Ceramic Society, 99 (2016) 2593-2600.[29] L. Zhao, Y. Zhang, F. Wang, S. Hu, X. Wang, et al. BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization, Nano Energy, 39 (2017) 461-469.[30] Y. Zhang, C. Liu, G. Zhu, X. Huang, et al. Piezotronic-effect-enhanced Ag2S/ZnO photocatalyst for organic dye degradation, RSC Adv., 7 (2017) 48176-48183.[31] J.V. Timonen, C. Johans, K. Kontturi, et al. A facile template-free approach to magnetodriven, multifunctional artificial cilia, ACS applied materials interfaces, 2 (2010) 2226-2230.[32] K.S. Hong, H. Konishi, X. Li. Direct water splitting through vibrating piezoelectric microfibers inwater, J. Phys. Chem. Lett, 1 (2010) 997-1002.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。