1. 毕业设计(论文)的内容和要求
{title}近几年来,全国范围内(中国国家电网公司和中国南方电网公司辖区)输电线路走廊区域日益受到山火侵扰,过火区域往往深入到塔基部分,对高压输电线路钢结构杆塔抗火等级提出预期要求,亟须避免出现杆塔结构元件出现渐变性结构失效、倾斜、变形甚至倒塌和电网瓦解等二次灾变事件,确保电力系统的安全性和可靠性。
就国内外高压输电线路山火火灾研究情况来看,大部分仍然以山火火灾形成环境分析为主,对高压输电线路钢结构杆塔抗火设计和耐火特性研究仍然处于空白状态。
由此,针对山火条件下高压输电线路钢结构杆塔抗火特性和倒塌危险等级判定开发数据分析模型,对高压输电线路钢结构杆塔的抗火特性进行模拟及预警设计,为各种高压、超高压和特高压等级别交直流输电线路钢结构杆塔的规划、设计和运行维护提供指导,确保电网的可靠和稳定运行。
基于分布式非接触传感器、多天线分集合成接收方式和远程服务器,通过Fluent分析山火时变空间温度场,利用ANSYS/ABAQUS/COMSOL等非线性有限元分析工具进行结构抗火检验,将两者耦合并实施动态模拟、阈值对比和图像拟合,建立针对高压输电线路走廊区域钢结构杆塔抗火特性及渐变性应力损益、应力形变和倒塌危险等级判定的理论计算、非线性有限元仿真模拟和数据分析模型,为各种塔形和各电压等级输电线路钢结构杆塔的规划、设计和运行维护提供指导,实现钢结构杆塔及智能电网安全运营和结构失效预警。
已具备条件如下。
南京工业大学安全科学与工程学院o Claro, et al. Forest fire management to avoid unintended consequences: A case study of Portugal using system dynamics[J]. Journal of Environmental Management, 2013, 130 (1):1-9.[22] Stevens J. T., Miller J. E. D., Fornwalt P. J.. Fire severity and changing composition of forest understory plant communities[J]. Journal of Vegetation Science, 2019.[23] Li H., Fei X., He C.. Study on Most Important Factor and Most Vulnerable Location for a Forest Fire Case Using Various Machine Learning Techniques[C]// 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD). IEEE Computer Society, 2018.[24] Feng X. D., Fu F. R., Miao T. C., et al. Effect of the Dynamic Characteristic of Long-Span Transmission Tower on High Voltage Transmission Line[J]. Applied Mechanics and Materials, 2014, 687-691:3423-3426.[25] Liu Y., Tang A. P.. Setting the Model of Iced High-Voltage Transmission Tower-Line System and Research Its Dynamic Characteristics[J]. Applied Mechanics and Materials.[26] Meng Z., Guifeng Z., Lulu W., et al. Wind-Induced Coupling Vibration Effects of High-Voltage Transmission Tower-Line Systems[J]. Shock and Vibration, 2017, 2017:1-34.[27] Tian L., Li H. N.. Simplified aseismic calculation method for a coupled system of high-voltage transmission tower-line[J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2008, 27(10):27-31.[28] Xiao Z. Z., Liu H. L., Li Z. L., et al. Research on Wind-Induced Reliability of Double Column Suspended Guyed Tower in Strong Wind Area[J]. International Journal of Structural Stability and Dynamics, 2015, 16(1):1640011.[29] Zhang Z., Li H., Li S., et al. Disaster analysis and safety assessment on transmission tower-line system: An overview[J]. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2016, 49(12):75-88.[30] 王进, 刘志雄, 吴章勤, et al. 一种应力量测的输电铁塔在线安全监测系统及方法, 实用新型专利,公开号: CN104092308B, 公开日期: 2017.09.22.[31] A. I. Mtz-Enriquez, K. P. Padmasree, A. I. Oliva, C. Gomez-Solis, E. Coutino-Gonzalez, C. R. Garcia, D. Esparza, J. Oliva. Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microparticles[J]. Sensors and Actuators: B. Chemical, 2020, 305.[32] 郑晓光,陈驰,王柯,宋爽,钱金菊,杨必胜. 基于全要素组件模型库的输电线路杆塔三维高效高精度建模[J]. 广东电力, 2017, 30 (06): 94-97 131.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。