1. 毕业设计(论文)的内容和要求
本课题将设计一种紧凑式等离子体协同催化装置。
研究不同电极形状和反应器结构尺寸下以及催化剂存在下的放电特性,确定最佳条件参数;在此基础上将紧凑式反应器用于甲烷干重整,研究不同参数对甲烷干重整性能的影响,并和常规介质阻挡放电特性及反应性能进行对比;最后把整个研究内容写成毕业论文。
毕业论文的内容和要求如下:(1)第1章引言部分,通过文献阅读和总结分析,给出如下内容:① 介质阻挡放电、等离子体协同催化的基本原理和结构、放电特性及相关影响因素;②等离子体协同催化的应用,尤其是甲烷干重整的应用,指出存在问题和不足;③ 本课题拟开展的研究内容和预期目标。
2. 参考文献
根据毕业要求指点10.3,毕设期间要进行研究现状调查与总结,要求在开题报告及毕业设计(论文)中涉及的文献不少于20篇,其中近5年不少于8篇,英文文献不少于5篇。
以下是与本课题相关的部分文献列表:[1] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.[2] 邱毓昌, 张文元, 施围. 高电压工程[M]. 西安: 西安交通大学出版, 1995.[3] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1):1-11.[4] 罗毅, 方志, 邱毓昌, 等. 介质阻挡放电影响因素分析[J]. 高压电器, 2004(2): 3-5.[5] 杨宽辉, 王保伟, 许根慧. 介质阻挡放电等离子体特性及其在化工中的应用 [J]. 化工学报, 2007, 7(7): 1609-1618.[6] 张安杰. Ni基催化剂上甲烷二氧化碳重整制合成气的研究[D]. 大连理工大学, 2011.[7] 鲁娜, 暴晓丁, 商克峰, 等. 电极结构及填充介质对二氧化碳重整甲烷制合成气的影响[J]. 高电压技术, 2018, 44(03): 881-889.[8] 张安杰, 丁天英, 刘云, 等. 介质阻挡放电等离子体-Cu-Ni/-γ-Al2O3催化剂体系在甲烷二氧化碳重整反应中的协同作用[J].分子催化, 2011, 25(01): 11-16.[9] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重整特性影响的实验 [J]. 电工技术学报, 2019, 34(06):215-223.[10] Wang L, Yi Y, Wu C, et al. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis [J]. Angewandte Chemie International Edition, 2017, 56(44): 13679-13683.[11] Mei D H, Liu S Y, Tu X. CO2 reforming with methane for syngas production using a dielectric barrier discharge plasma coupled with Ni/γ-Al2O3 catalysts: Process optimization through response surface methodology [J]. Journal of CO2 Utilization, 2017, 21: 314-26. [12] Lu N, Bao X D, Jiang N, et al. Non-thermal plasma-assisted catalytic dry reforming of methane and carbon dioxide over G-C3N4-based catalyst [J]. Topics in Catalysis, 2017, 60(12-14): 855868.[13] Ray D, Nepak D, Janampelli S, et al. Dry reforming of methane in DBD plasma over Ni-based catalysts: Influence of process conditions and support on performance and durability [J]. Energy Technology, 2018, 7(4): 1801008.[14] Michielsen Y, Uytdenhouwen A, Bogaerts V, et al. Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material [J]. Plasma Catalysis, 2019, 9(1): 51.[15] Zeng Y X, Wang L, Wu C F, et al. Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy [J]. Applied Catalysis B: Environmental, 2018(224): 469-478.[16] Mei D H, Ashford B, He Y-L, et al. Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports [J]. Plasma Processes and Polymers 2017, 14(6): 1600076.[17] Guo F, Chu W, Shi X-Y, et al. Effects of plasma introduction mode on Ni/gamma-Al2O3 catalysts for CH4 reforming with CO2 [J]. Chemical Journal of Chinese Universities-Chinese, 2009, 30(4): 746-751.[18] He X F, Hu H Q, Jin L J, et al. Integrated process of coal pyrolysis and CO2 reforming of methane with and without using dielectric barrier discharge plasma [J]. Energy sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(5): 613-620.[19] Rahemi N , Haghighi M , Babaluo A A , et al. Plasma-assisted dispersion of bimetallic Ni-Co over Al2O3-ZrO2 for CO2 reforming of methane: Influence of voltage on catalytic properties [J]. Topics in Catalysis, 2017, 60(12-14): 843-854.[20] Yap D, Tatibout J-M, Batiot-Dupeyrat C. Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature [J]. Catalysis Today, 2018(299): 263-271.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。