1. 毕业设计(论文)的内容和要求
早在几百年前,亚马逊印第安人就会将生物炭和有机质掺入土中,创造出肥沃的黑土,今天这种木炭被称为生物炭,可用植物废料制成。
这种由植物形成的,以固定碳元素为目的的木炭被科学家们称为生物炭。
生物炭几乎是纯碳,埋到地下后可以有几百至上千年不会消失,等于把碳封存进了土壤。
2. 参考文献
[1] Alexander, W.R.; McKinley, L.E. Deep Geological Disposal of Radioactive Wastes; Elsevier: Amsterdam, The Netherlands, 2007.[2] Alexander, W.R.; Reijonen, H.M.; McKinley, I.G. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories. Swiss J. Geosci. 2015, 108, 75100[3] Athanasiadis, I., 2017. Hydro-mechanical network modelling of porous geomaterials. Ph.D.thesis. University of Glasgow.[4] Athanasiadis, I., Wheeler, S., Grassl, P., 2016. Network modelling of the inuence of swelling on the transport behaviour of bentonite. Geosciences 6, 55.[5] Anawar H M,Akter F,Solaiman Z M,et al. 2015. Biochar: an emerging panacea for remediation of soil contaminants from mining,industry and sewage wastes[J]. Pedosphere,25( 5) : 654-665. [6] Bagnoud, A. (2015). Microbial metabolism in the deep subsurface: 1 case study of Opalinus Clay. Ph.D. dissertation, Ecole Polytechnique Fdrale de Lausannne, Lausanne, Switzerland.[7] Bagnoud, A., et al., Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nature Communications, 2016. 7: p. 12770[8] Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ et al. (2008). Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322: 275278.[9] DeJong, J. D., et al. (2013). Biogeochemical processes and geotechnical applications: Progress, opportunities, and challenges. Geotechnique, 63(4), 287301.[10] DeJong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C. (2010). Bio-mediated soil improvement. Ecol. Eng., 36(2), 197210.[11] F. Sun, S. Lu, Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil J. Plant Nutr. Soil Sci., 177 (2014), pp. 26-33[12] Gold T (a). The deep, hot biosphere. Proc Natl Acad Sci USA, 1992, 89: 60456049[13] Gold T (b). The Deep, Hot Biosphere. New York: Springer, 1992[14] Haque A,Tang C K, Islam S, et al. 2014. Biochar sequestration in limeslag treated synthetic soils: A green approach to ground improvement[J]. Journal of Materials in Civil Engineering, 26( 12) : 06014024.[15] Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 19151929 (2017).[16] Hunt, J, DuPonte, M, Sato, D. (2010) The basics of biochar: A natural soil amendment. Soil and Crop Management SCM-30[17] Ivanov, V., and Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Biotechnol., 7(2), 139153.[18] Jonsson, A., user, Cham[22] Masek O, Buss W, Roy-Poirier A, Lowe W, Peters C, Brownsort P, Mignard D, Pritchard C and Sohi SP. 2018. Consistency of biochar properties over time and production scales: A characterisation of standard materials. Journal of Analytical and Applied Pyrolysis 132:200-210[23] Masek O, Buss W and Sohi SP. Standard biochar materials. 2018. Environmental Science and Technology 52:9543-9544[24] Masek O, Buss W, Roy-Poirier A, Lowe W, Peters C, Brownsort P, Mignard D, Pritchard C and Sohi SP. 2018. Consistency of biochar properties over time and production scales: A characterisation of standard materials. Journal of Analytical and Applied Pyrolysis 132:200-210[25] McKinley, I.G. Applying natural analogues in predictive performance assessment (1): Principles and requirements; (2): Examples and discussions. In Risk Analysis in NuclearWaste Management; Klewer Academic Publisher: Dordrecht, The Netherlands, 1989; pp. 357396.[26] Mitchell, J. K., and Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng.[27] M. Lopez-Fernandez, A. Cherkouk, R. Vilchez-Vargas, R. Jauregui, D. Pieper, N. Boon, I. Sanchez-Castro, M.L. Merroun Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes Microb. Ecol., 70 (2015), pp. 922-935[28] West J M. A review of progress in the geomicrobiology of radioactive waste disposal. Rad Waste Manag Envir Rest, 1995, 19: 22632283[29] Woolf D, Lehmann J, Cowie A, Cayuela ML, Whitman T and Sohi SP. 2018. Biochar for climate change mitigation: navigating from science to evidence-based policy. Advances in Soil Science[30] Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Communications[31] Wu X, Holmfeldt K, Hubalek V, Lundin D, strm M, Bertilsson S et al. (2015). Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J 10: 11921203.[32] Rajapaksha A U,Chen S S,Tsang D C W,et al. 2016. Engineered/ designer biochar for contaminant removal / immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere,148( 27) : 276-291. [33] Stevens T O, McKinley J P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 1996, 270: 450455[34] Stroes-Gascoyne S, Schippers A, Schwyn B, et al. Microbial community analysis of opalinus clay drill core samples from the Mont Terri Underground Research Laboratory, Switzerland. Geomicrobiol J, 2007, 24: 117[35] Tangahu, B. V, Abdullah, A. R. S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011, 31. https://doi.org/10.1155/2011/939161.[36] Verheijen, F.G.A., Graber, E.R., Ameloot, N., Bastos, A.C., Sohi, S.P., Knicker, H. (2014) Biochars in soils: new insights and emerging research needs. European Journal of Soil Science 65:2227[37]刘敬辉, 洪宝宁, 张海波. 土体微细结构变化过程的试验研究方法[J]. 岩土力学, 2003, 24(5): 744-747.[38]刘晓雨, 卞荣军, 陆海飞, 郑聚锋, 程琨, 李恋卿, 张旭辉, 潘根兴. 生物质炭与土壤可持续管理:从土壤问题到生物质产业[J]. 中国科学院院刊, 2018, 33(2): 184-190[39]孙文静,孙德安,刘仕卿,方雷,. 高吸力下高庙子钙基膨润土的土水力学特性[J]. 岩土工程学报,2014,(2).[40]孙文静,韦广,崔玉军,孙德安,. 粉土干化过程中微观结构的演变[J]. 岩石力学与工程学报,2017,(10).[41]孙文静,刘仕卿,孙德安,魏振飞,. 高掺砂率膨润土混合土膨胀特性及其膨胀量预测[J]. 岩土工程学报,2015,(9). [42]孙文静,孙德安,刘仕卿,方雷,. 高吸力下高庙子钙基膨润土的土水力学特性[J]. 岩土工程学报,2014,(2).[43]于响,孙德安,孙文静,. 干湿循环下高庙子钙基膨润土持水和变形特性[J]. 岩土力学,2015,(5).[44]周健,史旦达,吴峰,等.基于数字图像技术的砂土液化可视化动三轴试验研究[J]. 岩土工程学报, 2011, 33(1): 81-87.
以上是毕业论文任务书,课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。